Spaces:
Runtime error
Runtime error
File size: 9,428 Bytes
08d5f37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# The MIT License (MIT)
#
# Copyright (c) 2015 braindead
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
#
# This code was extracted from the logmmse package (https://pypi.org/project/logmmse/) and I
# simply modified the interface to meet my needs.
import numpy as np
import math
from scipy.special import expn
from collections import namedtuple
NoiseProfile = namedtuple("NoiseProfile", "sampling_rate window_size len1 len2 win n_fft noise_mu2")
def profile_noise(noise, sampling_rate, window_size=0):
"""
Creates a profile of the noise in a given waveform.
:param noise: a waveform containing noise ONLY, as a numpy array of floats or ints.
:param sampling_rate: the sampling rate of the audio
:param window_size: the size of the window the logmmse algorithm operates on. A default value
will be picked if left as 0.
:return: a NoiseProfile object
"""
noise, dtype = to_float(noise)
noise += np.finfo(np.float64).eps
if window_size == 0:
window_size = int(math.floor(0.02 * sampling_rate))
if window_size % 2 == 1:
window_size = window_size + 1
perc = 50
len1 = int(math.floor(window_size * perc / 100))
len2 = int(window_size - len1)
win = np.hanning(window_size)
win = win * len2 / np.sum(win)
n_fft = 2 * window_size
noise_mean = np.zeros(n_fft)
n_frames = len(noise) // window_size
for j in range(0, window_size * n_frames, window_size):
noise_mean += np.absolute(np.fft.fft(win * noise[j:j + window_size], n_fft, axis=0))
noise_mu2 = (noise_mean / n_frames) ** 2
return NoiseProfile(sampling_rate, window_size, len1, len2, win, n_fft, noise_mu2)
def denoise(wav, noise_profile: NoiseProfile, eta=0.15):
"""
Cleans the noise from a speech waveform given a noise profile. The waveform must have the
same sampling rate as the one used to create the noise profile.
:param wav: a speech waveform as a numpy array of floats or ints.
:param noise_profile: a NoiseProfile object that was created from a similar (or a segment of
the same) waveform.
:param eta: voice threshold for noise update. While the voice activation detection value is
below this threshold, the noise profile will be continuously updated throughout the audio.
Set to 0 to disable updating the noise profile.
:return: the clean wav as a numpy array of floats or ints of the same length.
"""
wav, dtype = to_float(wav)
wav += np.finfo(np.float64).eps
p = noise_profile
nframes = int(math.floor(len(wav) / p.len2) - math.floor(p.window_size / p.len2))
x_final = np.zeros(nframes * p.len2)
aa = 0.98
mu = 0.98
ksi_min = 10 ** (-25 / 10)
x_old = np.zeros(p.len1)
xk_prev = np.zeros(p.len1)
noise_mu2 = p.noise_mu2
for k in range(0, nframes * p.len2, p.len2):
insign = p.win * wav[k:k + p.window_size]
spec = np.fft.fft(insign, p.n_fft, axis=0)
sig = np.absolute(spec)
sig2 = sig ** 2
gammak = np.minimum(sig2 / noise_mu2, 40)
if xk_prev.all() == 0:
ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
else:
ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
ksi = np.maximum(ksi_min, ksi)
log_sigma_k = gammak * ksi/(1 + ksi) - np.log(1 + ksi)
vad_decision = np.sum(log_sigma_k) / p.window_size
if vad_decision < eta:
noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
a = ksi / (1 + ksi)
vk = a * gammak
ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
hw = a * np.exp(ei_vk)
sig = sig * hw
xk_prev = sig ** 2
xi_w = np.fft.ifft(hw * spec, p.n_fft, axis=0)
xi_w = np.real(xi_w)
x_final[k:k + p.len2] = x_old + xi_w[0:p.len1]
x_old = xi_w[p.len1:p.window_size]
output = from_float(x_final, dtype)
output = np.pad(output, (0, len(wav) - len(output)), mode="constant")
return output
## Alternative VAD algorithm to webrctvad. It has the advantage of not requiring to install that
## darn package and it also works for any sampling rate. Maybe I'll eventually use it instead of
## webrctvad
# def vad(wav, sampling_rate, eta=0.15, window_size=0):
# """
# TODO: fix doc
# Creates a profile of the noise in a given waveform.
#
# :param wav: a waveform containing noise ONLY, as a numpy array of floats or ints.
# :param sampling_rate: the sampling rate of the audio
# :param window_size: the size of the window the logmmse algorithm operates on. A default value
# will be picked if left as 0.
# :param eta: voice threshold for noise update. While the voice activation detection value is
# below this threshold, the noise profile will be continuously updated throughout the audio.
# Set to 0 to disable updating the noise profile.
# """
# wav, dtype = to_float(wav)
# wav += np.finfo(np.float64).eps
#
# if window_size == 0:
# window_size = int(math.floor(0.02 * sampling_rate))
#
# if window_size % 2 == 1:
# window_size = window_size + 1
#
# perc = 50
# len1 = int(math.floor(window_size * perc / 100))
# len2 = int(window_size - len1)
#
# win = np.hanning(window_size)
# win = win * len2 / np.sum(win)
# n_fft = 2 * window_size
#
# wav_mean = np.zeros(n_fft)
# n_frames = len(wav) // window_size
# for j in range(0, window_size * n_frames, window_size):
# wav_mean += np.absolute(np.fft.fft(win * wav[j:j + window_size], n_fft, axis=0))
# noise_mu2 = (wav_mean / n_frames) ** 2
#
# wav, dtype = to_float(wav)
# wav += np.finfo(np.float64).eps
#
# nframes = int(math.floor(len(wav) / len2) - math.floor(window_size / len2))
# vad = np.zeros(nframes * len2, dtype=np.bool)
#
# aa = 0.98
# mu = 0.98
# ksi_min = 10 ** (-25 / 10)
#
# xk_prev = np.zeros(len1)
# noise_mu2 = noise_mu2
# for k in range(0, nframes * len2, len2):
# insign = win * wav[k:k + window_size]
#
# spec = np.fft.fft(insign, n_fft, axis=0)
# sig = np.absolute(spec)
# sig2 = sig ** 2
#
# gammak = np.minimum(sig2 / noise_mu2, 40)
#
# if xk_prev.all() == 0:
# ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0)
# else:
# ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0)
# ksi = np.maximum(ksi_min, ksi)
#
# log_sigma_k = gammak * ksi / (1 + ksi) - np.log(1 + ksi)
# vad_decision = np.sum(log_sigma_k) / window_size
# if vad_decision < eta:
# noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2
# print(vad_decision)
#
# a = ksi / (1 + ksi)
# vk = a * gammak
# ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8))
# hw = a * np.exp(ei_vk)
# sig = sig * hw
# xk_prev = sig ** 2
#
# vad[k:k + len2] = vad_decision >= eta
#
# vad = np.pad(vad, (0, len(wav) - len(vad)), mode="constant")
# return vad
def to_float(_input):
if _input.dtype == np.float64:
return _input, _input.dtype
elif _input.dtype == np.float32:
return _input.astype(np.float64), _input.dtype
elif _input.dtype == np.uint8:
return (_input - 128) / 128., _input.dtype
elif _input.dtype == np.int16:
return _input / 32768., _input.dtype
elif _input.dtype == np.int32:
return _input / 2147483648., _input.dtype
raise ValueError('Unsupported wave file format')
def from_float(_input, dtype):
if dtype == np.float64:
return _input, np.float64
elif dtype == np.float32:
return _input.astype(np.float32)
elif dtype == np.uint8:
return ((_input * 128) + 128).astype(np.uint8)
elif dtype == np.int16:
return (_input * 32768).astype(np.int16)
elif dtype == np.int32:
print(_input)
return (_input * 2147483648).astype(np.int32)
raise ValueError('Unsupported wave file format')
|