Spaces:
Runtime error
Runtime error
File size: 11,495 Bytes
08d5f37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from datetime import datetime
from functools import partial
from pathlib import Path
import torch
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from synthesizer import audio
from synthesizer.models.tacotron import Tacotron
from synthesizer.synthesizer_dataset import SynthesizerDataset, collate_synthesizer
from synthesizer.utils import ValueWindow, data_parallel_workaround
from synthesizer.utils.plot import plot_spectrogram
from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import sequence_to_text
from vocoder.display import *
def np_now(x: torch.Tensor): return x.detach().cpu().numpy()
def time_string():
return datetime.now().strftime("%Y-%m-%d %H:%M")
def train(run_id: str, syn_dir: Path, models_dir: Path, save_every: int, backup_every: int, force_restart: bool,
hparams):
models_dir.mkdir(exist_ok=True)
model_dir = models_dir.joinpath(run_id)
plot_dir = model_dir.joinpath("plots")
wav_dir = model_dir.joinpath("wavs")
mel_output_dir = model_dir.joinpath("mel-spectrograms")
meta_folder = model_dir.joinpath("metas")
model_dir.mkdir(exist_ok=True)
plot_dir.mkdir(exist_ok=True)
wav_dir.mkdir(exist_ok=True)
mel_output_dir.mkdir(exist_ok=True)
meta_folder.mkdir(exist_ok=True)
weights_fpath = model_dir / f"synthesizer.pt"
metadata_fpath = syn_dir.joinpath("train.txt")
print("Checkpoint path: {}".format(weights_fpath))
print("Loading training data from: {}".format(metadata_fpath))
print("Using model: Tacotron")
# Bookkeeping
time_window = ValueWindow(100)
loss_window = ValueWindow(100)
# From WaveRNN/train_tacotron.py
if torch.cuda.is_available():
device = torch.device("cuda")
for session in hparams.tts_schedule:
_, _, _, batch_size = session
if batch_size % torch.cuda.device_count() != 0:
raise ValueError("`batch_size` must be evenly divisible by n_gpus!")
else:
device = torch.device("cpu")
print("Using device:", device)
# Instantiate Tacotron Model
print("\nInitialising Tacotron Model...\n")
model = Tacotron(embed_dims=hparams.tts_embed_dims,
num_chars=len(symbols),
encoder_dims=hparams.tts_encoder_dims,
decoder_dims=hparams.tts_decoder_dims,
n_mels=hparams.num_mels,
fft_bins=hparams.num_mels,
postnet_dims=hparams.tts_postnet_dims,
encoder_K=hparams.tts_encoder_K,
lstm_dims=hparams.tts_lstm_dims,
postnet_K=hparams.tts_postnet_K,
num_highways=hparams.tts_num_highways,
dropout=hparams.tts_dropout,
stop_threshold=hparams.tts_stop_threshold,
speaker_embedding_size=hparams.speaker_embedding_size).to(device)
# Initialize the optimizer
optimizer = optim.Adam(model.parameters())
# Load the weights
if force_restart or not weights_fpath.exists():
print("\nStarting the training of Tacotron from scratch\n")
model.save(weights_fpath)
# Embeddings metadata
char_embedding_fpath = meta_folder.joinpath("CharacterEmbeddings.tsv")
with open(char_embedding_fpath, "w", encoding="utf-8") as f:
for symbol in symbols:
if symbol == " ":
symbol = "\\s" # For visual purposes, swap space with \s
f.write("{}\n".format(symbol))
else:
print("\nLoading weights at %s" % weights_fpath)
model.load(weights_fpath, optimizer)
print("Tacotron weights loaded from step %d" % model.step)
# Initialize the dataset
metadata_fpath = syn_dir.joinpath("train.txt")
mel_dir = syn_dir.joinpath("mels")
embed_dir = syn_dir.joinpath("embeds")
dataset = SynthesizerDataset(metadata_fpath, mel_dir, embed_dir, hparams)
for i, session in enumerate(hparams.tts_schedule):
current_step = model.get_step()
r, lr, max_step, batch_size = session
training_steps = max_step - current_step
# Do we need to change to the next session?
if current_step >= max_step:
# Are there no further sessions than the current one?
if i == len(hparams.tts_schedule) - 1:
# We have completed training. Save the model and exit
model.save(weights_fpath, optimizer)
break
else:
# There is a following session, go to it
continue
model.r = r
# Begin the training
simple_table([(f"Steps with r={r}", str(training_steps // 1000) + "k Steps"),
("Batch Size", batch_size),
("Learning Rate", lr),
("Outputs/Step (r)", model.r)])
for p in optimizer.param_groups:
p["lr"] = lr
collate_fn = partial(collate_synthesizer, r=r, hparams=hparams)
data_loader = DataLoader(dataset, batch_size, shuffle=True, num_workers=2, collate_fn=collate_fn)
total_iters = len(dataset)
steps_per_epoch = np.ceil(total_iters / batch_size).astype(np.int32)
epochs = np.ceil(training_steps / steps_per_epoch).astype(np.int32)
for epoch in range(1, epochs+1):
for i, (texts, mels, embeds, idx) in enumerate(data_loader, 1):
start_time = time.time()
# Generate stop tokens for training
stop = torch.ones(mels.shape[0], mels.shape[2])
for j, k in enumerate(idx):
stop[j, :int(dataset.metadata[k][4])-1] = 0
texts = texts.to(device)
mels = mels.to(device)
embeds = embeds.to(device)
stop = stop.to(device)
# Forward pass
# Parallelize model onto GPUS using workaround due to python bug
if device.type == "cuda" and torch.cuda.device_count() > 1:
m1_hat, m2_hat, attention, stop_pred = data_parallel_workaround(model, texts, mels, embeds)
else:
m1_hat, m2_hat, attention, stop_pred = model(texts, mels, embeds)
# Backward pass
m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels)
m2_loss = F.mse_loss(m2_hat, mels)
stop_loss = F.binary_cross_entropy(stop_pred, stop)
loss = m1_loss + m2_loss + stop_loss
optimizer.zero_grad()
loss.backward()
if hparams.tts_clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.tts_clip_grad_norm)
if np.isnan(grad_norm.cpu()):
print("grad_norm was NaN!")
optimizer.step()
time_window.append(time.time() - start_time)
loss_window.append(loss.item())
step = model.get_step()
k = step // 1000
msg = f"| Epoch: {epoch}/{epochs} ({i}/{steps_per_epoch}) | Loss: {loss_window.average:#.4} | " \
f"{1./time_window.average:#.2} steps/s | Step: {k}k | "
stream(msg)
# Backup or save model as appropriate
if backup_every != 0 and step % backup_every == 0 :
backup_fpath = weights_fpath.parent / f"synthesizer_{k:06d}.pt"
model.save(backup_fpath, optimizer)
if save_every != 0 and step % save_every == 0 :
# Must save latest optimizer state to ensure that resuming training
# doesn't produce artifacts
model.save(weights_fpath, optimizer)
# Evaluate model to generate samples
epoch_eval = hparams.tts_eval_interval == -1 and i == steps_per_epoch # If epoch is done
step_eval = hparams.tts_eval_interval > 0 and step % hparams.tts_eval_interval == 0 # Every N steps
if epoch_eval or step_eval:
for sample_idx in range(hparams.tts_eval_num_samples):
# At most, generate samples equal to number in the batch
if sample_idx + 1 <= len(texts):
# Remove padding from mels using frame length in metadata
mel_length = int(dataset.metadata[idx[sample_idx]][4])
mel_prediction = np_now(m2_hat[sample_idx]).T[:mel_length]
target_spectrogram = np_now(mels[sample_idx]).T[:mel_length]
attention_len = mel_length // model.r
eval_model(attention=np_now(attention[sample_idx][:, :attention_len]),
mel_prediction=mel_prediction,
target_spectrogram=target_spectrogram,
input_seq=np_now(texts[sample_idx]),
step=step,
plot_dir=plot_dir,
mel_output_dir=mel_output_dir,
wav_dir=wav_dir,
sample_num=sample_idx + 1,
loss=loss,
hparams=hparams)
# Break out of loop to update training schedule
if step >= max_step:
break
# Add line break after every epoch
print("")
def eval_model(attention, mel_prediction, target_spectrogram, input_seq, step,
plot_dir, mel_output_dir, wav_dir, sample_num, loss, hparams):
# Save some results for evaluation
attention_path = str(plot_dir.joinpath("attention_step_{}_sample_{}".format(step, sample_num)))
save_attention(attention, attention_path)
# save predicted mel spectrogram to disk (debug)
mel_output_fpath = mel_output_dir.joinpath("mel-prediction-step-{}_sample_{}.npy".format(step, sample_num))
np.save(str(mel_output_fpath), mel_prediction, allow_pickle=False)
# save griffin lim inverted wav for debug (mel -> wav)
wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams)
wav_fpath = wav_dir.joinpath("step-{}-wave-from-mel_sample_{}.wav".format(step, sample_num))
audio.save_wav(wav, str(wav_fpath), sr=hparams.sample_rate)
# save real and predicted mel-spectrogram plot to disk (control purposes)
spec_fpath = plot_dir.joinpath("step-{}-mel-spectrogram_sample_{}.png".format(step, sample_num))
title_str = "{}, {}, step={}, loss={:.5f}".format("Tacotron", time_string(), step, loss)
plot_spectrogram(mel_prediction, str(spec_fpath), title=title_str,
target_spectrogram=target_spectrogram,
max_len=target_spectrogram.size // hparams.num_mels)
print("Input at step {}: {}".format(step, sequence_to_text(input_seq)))
|