Spaces:
Running
Running
import librosa | |
import librosa.filters | |
import numpy as np | |
from scipy import signal | |
from scipy.io import wavfile | |
import soundfile as sf | |
def load_wav(path, sr): | |
return librosa.core.load(path, sr=sr)[0] | |
def save_wav(wav, path, sr): | |
wav *= 32767 / max(0.01, np.max(np.abs(wav))) | |
#proposed by @dsmiller | |
wavfile.write(path, sr, wav.astype(np.int16)) | |
def save_wavenet_wav(wav, path, sr): | |
sf.write(path, wav.astype(np.float32), sr) | |
def preemphasis(wav, k, preemphasize=True): | |
if preemphasize: | |
return signal.lfilter([1, -k], [1], wav) | |
return wav | |
def inv_preemphasis(wav, k, inv_preemphasize=True): | |
if inv_preemphasize: | |
return signal.lfilter([1], [1, -k], wav) | |
return wav | |
#From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py | |
def start_and_end_indices(quantized, silence_threshold=2): | |
for start in range(quantized.size): | |
if abs(quantized[start] - 127) > silence_threshold: | |
break | |
for end in range(quantized.size - 1, 1, -1): | |
if abs(quantized[end] - 127) > silence_threshold: | |
break | |
assert abs(quantized[start] - 127) > silence_threshold | |
assert abs(quantized[end] - 127) > silence_threshold | |
return start, end | |
def get_hop_size(hparams): | |
hop_size = hparams.hop_size | |
if hop_size is None: | |
assert hparams.frame_shift_ms is not None | |
hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate) | |
return hop_size | |
def linearspectrogram(wav, hparams): | |
D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) | |
S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db | |
if hparams.signal_normalization: | |
return _normalize(S, hparams) | |
return S | |
def melspectrogram(wav, hparams): | |
D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) | |
S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db | |
if hparams.signal_normalization: | |
return _normalize(S, hparams) | |
return S | |
def inv_linear_spectrogram(linear_spectrogram, hparams): | |
"""Converts linear spectrogram to waveform using librosa""" | |
if hparams.signal_normalization: | |
D = _denormalize(linear_spectrogram, hparams) | |
else: | |
D = linear_spectrogram | |
S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear | |
if hparams.use_lws: | |
processor = _lws_processor(hparams) | |
D = processor.run_lws(S.astype(np.float64).T ** hparams.power) | |
y = processor.istft(D).astype(np.float32) | |
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) | |
else: | |
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) | |
def inv_mel_spectrogram(mel_spectrogram, hparams): | |
"""Converts mel spectrogram to waveform using librosa""" | |
if hparams.signal_normalization: | |
D = _denormalize(mel_spectrogram, hparams) | |
else: | |
D = mel_spectrogram | |
S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear | |
if hparams.use_lws: | |
processor = _lws_processor(hparams) | |
D = processor.run_lws(S.astype(np.float64).T ** hparams.power) | |
y = processor.istft(D).astype(np.float32) | |
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) | |
else: | |
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) | |
def _lws_processor(hparams): | |
import lws | |
return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech") | |
def _griffin_lim(S, hparams): | |
"""librosa implementation of Griffin-Lim | |
Based on https://github.com/librosa/librosa/issues/434 | |
""" | |
angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) | |
S_complex = np.abs(S).astype(np.complex) | |
y = _istft(S_complex * angles, hparams) | |
for i in range(hparams.griffin_lim_iters): | |
angles = np.exp(1j * np.angle(_stft(y, hparams))) | |
y = _istft(S_complex * angles, hparams) | |
return y | |
def _stft(y, hparams): | |
if hparams.use_lws: | |
return _lws_processor(hparams).stft(y).T | |
else: | |
return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size) | |
def _istft(y, hparams): | |
return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size) | |
########################################################## | |
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) | |
def num_frames(length, fsize, fshift): | |
"""Compute number of time frames of spectrogram | |
""" | |
pad = (fsize - fshift) | |
if length % fshift == 0: | |
M = (length + pad * 2 - fsize) // fshift + 1 | |
else: | |
M = (length + pad * 2 - fsize) // fshift + 2 | |
return M | |
def pad_lr(x, fsize, fshift): | |
"""Compute left and right padding | |
""" | |
M = num_frames(len(x), fsize, fshift) | |
pad = (fsize - fshift) | |
T = len(x) + 2 * pad | |
r = (M - 1) * fshift + fsize - T | |
return pad, pad + r | |
########################################################## | |
#Librosa correct padding | |
def librosa_pad_lr(x, fsize, fshift): | |
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] | |
# Conversions | |
_mel_basis = None | |
_inv_mel_basis = None | |
def _linear_to_mel(spectogram, hparams): | |
global _mel_basis | |
if _mel_basis is None: | |
_mel_basis = _build_mel_basis(hparams) | |
return np.dot(_mel_basis, spectogram) | |
def _mel_to_linear(mel_spectrogram, hparams): | |
global _inv_mel_basis | |
if _inv_mel_basis is None: | |
_inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams)) | |
return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram)) | |
def _build_mel_basis(hparams): | |
assert hparams.fmax <= hparams.sample_rate // 2 | |
return librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=hparams.num_mels, | |
fmin=hparams.fmin, fmax=hparams.fmax) | |
def _amp_to_db(x, hparams): | |
min_level = np.exp(hparams.min_level_db / 20 * np.log(10)) | |
return 20 * np.log10(np.maximum(min_level, x)) | |
def _db_to_amp(x): | |
return np.power(10.0, (x) * 0.05) | |
def _normalize(S, hparams): | |
if hparams.allow_clipping_in_normalization: | |
if hparams.symmetric_mels: | |
return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value, | |
-hparams.max_abs_value, hparams.max_abs_value) | |
else: | |
return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value) | |
assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0 | |
if hparams.symmetric_mels: | |
return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value | |
else: | |
return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)) | |
def _denormalize(D, hparams): | |
if hparams.allow_clipping_in_normalization: | |
if hparams.symmetric_mels: | |
return (((np.clip(D, -hparams.max_abs_value, | |
hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) | |
+ hparams.min_level_db) | |
else: | |
return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db) | |
if hparams.symmetric_mels: | |
return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db) | |
else: | |
return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db) | |