ruslanmv's picture
Add application file
08d5f37
raw
history blame contribute delete
No virus
11.5 kB
from datetime import datetime
from functools import partial
from pathlib import Path
import torch
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from synthesizer import audio
from synthesizer.models.tacotron import Tacotron
from synthesizer.synthesizer_dataset import SynthesizerDataset, collate_synthesizer
from synthesizer.utils import ValueWindow, data_parallel_workaround
from synthesizer.utils.plot import plot_spectrogram
from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import sequence_to_text
from vocoder.display import *
def np_now(x: torch.Tensor): return x.detach().cpu().numpy()
def time_string():
return datetime.now().strftime("%Y-%m-%d %H:%M")
def train(run_id: str, syn_dir: Path, models_dir: Path, save_every: int, backup_every: int, force_restart: bool,
hparams):
models_dir.mkdir(exist_ok=True)
model_dir = models_dir.joinpath(run_id)
plot_dir = model_dir.joinpath("plots")
wav_dir = model_dir.joinpath("wavs")
mel_output_dir = model_dir.joinpath("mel-spectrograms")
meta_folder = model_dir.joinpath("metas")
model_dir.mkdir(exist_ok=True)
plot_dir.mkdir(exist_ok=True)
wav_dir.mkdir(exist_ok=True)
mel_output_dir.mkdir(exist_ok=True)
meta_folder.mkdir(exist_ok=True)
weights_fpath = model_dir / f"synthesizer.pt"
metadata_fpath = syn_dir.joinpath("train.txt")
print("Checkpoint path: {}".format(weights_fpath))
print("Loading training data from: {}".format(metadata_fpath))
print("Using model: Tacotron")
# Bookkeeping
time_window = ValueWindow(100)
loss_window = ValueWindow(100)
# From WaveRNN/train_tacotron.py
if torch.cuda.is_available():
device = torch.device("cuda")
for session in hparams.tts_schedule:
_, _, _, batch_size = session
if batch_size % torch.cuda.device_count() != 0:
raise ValueError("`batch_size` must be evenly divisible by n_gpus!")
else:
device = torch.device("cpu")
print("Using device:", device)
# Instantiate Tacotron Model
print("\nInitialising Tacotron Model...\n")
model = Tacotron(embed_dims=hparams.tts_embed_dims,
num_chars=len(symbols),
encoder_dims=hparams.tts_encoder_dims,
decoder_dims=hparams.tts_decoder_dims,
n_mels=hparams.num_mels,
fft_bins=hparams.num_mels,
postnet_dims=hparams.tts_postnet_dims,
encoder_K=hparams.tts_encoder_K,
lstm_dims=hparams.tts_lstm_dims,
postnet_K=hparams.tts_postnet_K,
num_highways=hparams.tts_num_highways,
dropout=hparams.tts_dropout,
stop_threshold=hparams.tts_stop_threshold,
speaker_embedding_size=hparams.speaker_embedding_size).to(device)
# Initialize the optimizer
optimizer = optim.Adam(model.parameters())
# Load the weights
if force_restart or not weights_fpath.exists():
print("\nStarting the training of Tacotron from scratch\n")
model.save(weights_fpath)
# Embeddings metadata
char_embedding_fpath = meta_folder.joinpath("CharacterEmbeddings.tsv")
with open(char_embedding_fpath, "w", encoding="utf-8") as f:
for symbol in symbols:
if symbol == " ":
symbol = "\\s" # For visual purposes, swap space with \s
f.write("{}\n".format(symbol))
else:
print("\nLoading weights at %s" % weights_fpath)
model.load(weights_fpath, optimizer)
print("Tacotron weights loaded from step %d" % model.step)
# Initialize the dataset
metadata_fpath = syn_dir.joinpath("train.txt")
mel_dir = syn_dir.joinpath("mels")
embed_dir = syn_dir.joinpath("embeds")
dataset = SynthesizerDataset(metadata_fpath, mel_dir, embed_dir, hparams)
for i, session in enumerate(hparams.tts_schedule):
current_step = model.get_step()
r, lr, max_step, batch_size = session
training_steps = max_step - current_step
# Do we need to change to the next session?
if current_step >= max_step:
# Are there no further sessions than the current one?
if i == len(hparams.tts_schedule) - 1:
# We have completed training. Save the model and exit
model.save(weights_fpath, optimizer)
break
else:
# There is a following session, go to it
continue
model.r = r
# Begin the training
simple_table([(f"Steps with r={r}", str(training_steps // 1000) + "k Steps"),
("Batch Size", batch_size),
("Learning Rate", lr),
("Outputs/Step (r)", model.r)])
for p in optimizer.param_groups:
p["lr"] = lr
collate_fn = partial(collate_synthesizer, r=r, hparams=hparams)
data_loader = DataLoader(dataset, batch_size, shuffle=True, num_workers=2, collate_fn=collate_fn)
total_iters = len(dataset)
steps_per_epoch = np.ceil(total_iters / batch_size).astype(np.int32)
epochs = np.ceil(training_steps / steps_per_epoch).astype(np.int32)
for epoch in range(1, epochs+1):
for i, (texts, mels, embeds, idx) in enumerate(data_loader, 1):
start_time = time.time()
# Generate stop tokens for training
stop = torch.ones(mels.shape[0], mels.shape[2])
for j, k in enumerate(idx):
stop[j, :int(dataset.metadata[k][4])-1] = 0
texts = texts.to(device)
mels = mels.to(device)
embeds = embeds.to(device)
stop = stop.to(device)
# Forward pass
# Parallelize model onto GPUS using workaround due to python bug
if device.type == "cuda" and torch.cuda.device_count() > 1:
m1_hat, m2_hat, attention, stop_pred = data_parallel_workaround(model, texts, mels, embeds)
else:
m1_hat, m2_hat, attention, stop_pred = model(texts, mels, embeds)
# Backward pass
m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels)
m2_loss = F.mse_loss(m2_hat, mels)
stop_loss = F.binary_cross_entropy(stop_pred, stop)
loss = m1_loss + m2_loss + stop_loss
optimizer.zero_grad()
loss.backward()
if hparams.tts_clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.tts_clip_grad_norm)
if np.isnan(grad_norm.cpu()):
print("grad_norm was NaN!")
optimizer.step()
time_window.append(time.time() - start_time)
loss_window.append(loss.item())
step = model.get_step()
k = step // 1000
msg = f"| Epoch: {epoch}/{epochs} ({i}/{steps_per_epoch}) | Loss: {loss_window.average:#.4} | " \
f"{1./time_window.average:#.2} steps/s | Step: {k}k | "
stream(msg)
# Backup or save model as appropriate
if backup_every != 0 and step % backup_every == 0 :
backup_fpath = weights_fpath.parent / f"synthesizer_{k:06d}.pt"
model.save(backup_fpath, optimizer)
if save_every != 0 and step % save_every == 0 :
# Must save latest optimizer state to ensure that resuming training
# doesn't produce artifacts
model.save(weights_fpath, optimizer)
# Evaluate model to generate samples
epoch_eval = hparams.tts_eval_interval == -1 and i == steps_per_epoch # If epoch is done
step_eval = hparams.tts_eval_interval > 0 and step % hparams.tts_eval_interval == 0 # Every N steps
if epoch_eval or step_eval:
for sample_idx in range(hparams.tts_eval_num_samples):
# At most, generate samples equal to number in the batch
if sample_idx + 1 <= len(texts):
# Remove padding from mels using frame length in metadata
mel_length = int(dataset.metadata[idx[sample_idx]][4])
mel_prediction = np_now(m2_hat[sample_idx]).T[:mel_length]
target_spectrogram = np_now(mels[sample_idx]).T[:mel_length]
attention_len = mel_length // model.r
eval_model(attention=np_now(attention[sample_idx][:, :attention_len]),
mel_prediction=mel_prediction,
target_spectrogram=target_spectrogram,
input_seq=np_now(texts[sample_idx]),
step=step,
plot_dir=plot_dir,
mel_output_dir=mel_output_dir,
wav_dir=wav_dir,
sample_num=sample_idx + 1,
loss=loss,
hparams=hparams)
# Break out of loop to update training schedule
if step >= max_step:
break
# Add line break after every epoch
print("")
def eval_model(attention, mel_prediction, target_spectrogram, input_seq, step,
plot_dir, mel_output_dir, wav_dir, sample_num, loss, hparams):
# Save some results for evaluation
attention_path = str(plot_dir.joinpath("attention_step_{}_sample_{}".format(step, sample_num)))
save_attention(attention, attention_path)
# save predicted mel spectrogram to disk (debug)
mel_output_fpath = mel_output_dir.joinpath("mel-prediction-step-{}_sample_{}.npy".format(step, sample_num))
np.save(str(mel_output_fpath), mel_prediction, allow_pickle=False)
# save griffin lim inverted wav for debug (mel -> wav)
wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams)
wav_fpath = wav_dir.joinpath("step-{}-wave-from-mel_sample_{}.wav".format(step, sample_num))
audio.save_wav(wav, str(wav_fpath), sr=hparams.sample_rate)
# save real and predicted mel-spectrogram plot to disk (control purposes)
spec_fpath = plot_dir.joinpath("step-{}-mel-spectrogram_sample_{}.png".format(step, sample_num))
title_str = "{}, {}, step={}, loss={:.5f}".format("Tacotron", time_string(), step, loss)
plot_spectrogram(mel_prediction, str(spec_fpath), title=title_str,
target_spectrogram=target_spectrogram,
max_len=target_spectrogram.size // hparams.num_mels)
print("Input at step {}: {}".format(step, sequence_to_text(input_seq)))