from encoder.data_objects.random_cycler import RandomCycler from encoder.data_objects.speaker_batch import SpeakerBatch from encoder.data_objects.speaker import Speaker from encoder.params_data import partials_n_frames from torch.utils.data import Dataset, DataLoader from pathlib import Path # TODO: improve with a pool of speakers for data efficiency class SpeakerVerificationDataset(Dataset): def __init__(self, datasets_root: Path): self.root = datasets_root speaker_dirs = [f for f in self.root.glob("*") if f.is_dir()] if len(speaker_dirs) == 0: raise Exception("No speakers found. Make sure you are pointing to the directory " "containing all preprocessed speaker directories.") self.speakers = [Speaker(speaker_dir) for speaker_dir in speaker_dirs] self.speaker_cycler = RandomCycler(self.speakers) def __len__(self): return int(1e10) def __getitem__(self, index): return next(self.speaker_cycler) def get_logs(self): log_string = "" for log_fpath in self.root.glob("*.txt"): with log_fpath.open("r") as log_file: log_string += "".join(log_file.readlines()) return log_string class SpeakerVerificationDataLoader(DataLoader): def __init__(self, dataset, speakers_per_batch, utterances_per_speaker, sampler=None, batch_sampler=None, num_workers=0, pin_memory=False, timeout=0, worker_init_fn=None): self.utterances_per_speaker = utterances_per_speaker super().__init__( dataset=dataset, batch_size=speakers_per_batch, shuffle=False, sampler=sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=self.collate, pin_memory=pin_memory, drop_last=False, timeout=timeout, worker_init_fn=worker_init_fn ) def collate(self, speakers): return SpeakerBatch(speakers, self.utterances_per_speaker, partials_n_frames)