Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,4 +1,116 @@
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
@@ -42,7 +154,7 @@ iface = gr.Interface(
|
|
42 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
43 |
|
44 |
|
45 |
-
|
46 |
import gradio as gr
|
47 |
import subprocess
|
48 |
|
|
|
1 |
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
|
4 |
+
import torch
|
5 |
+
|
6 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
7 |
+
torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
|
8 |
+
torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
|
9 |
+
|
10 |
+
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
11 |
+
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
12 |
+
|
13 |
+
git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
14 |
+
git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
15 |
+
|
16 |
+
blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
17 |
+
blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
18 |
+
|
19 |
+
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
20 |
+
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
21 |
+
|
22 |
+
vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
23 |
+
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
24 |
+
vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
25 |
+
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
|
28 |
+
git_model_base.to(device)
|
29 |
+
blip_model_base.to(device)
|
30 |
+
git_model_large.to(device)
|
31 |
+
blip_model_large.to(device)
|
32 |
+
vitgpt_model.to(device)
|
33 |
+
|
34 |
+
def generate_caption(processor, model, image, tokenizer=None):
|
35 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
36 |
+
|
37 |
+
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
38 |
+
|
39 |
+
if tokenizer is not None:
|
40 |
+
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
41 |
+
else:
|
42 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
43 |
+
|
44 |
+
return generated_caption
|
45 |
+
|
46 |
+
def generate_captions(image):
|
47 |
+
caption_git_base = generate_caption(git_processor_base, git_model_base, image)
|
48 |
+
|
49 |
+
caption_git_large = generate_caption(git_processor_large, git_model_large, image)
|
50 |
+
|
51 |
+
caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
|
52 |
+
|
53 |
+
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
54 |
+
|
55 |
+
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
56 |
+
|
57 |
+
return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt
|
58 |
+
|
59 |
+
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
60 |
+
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Caption generated by GIT-large"), gr.outputs.Textbox(label="Caption generated by BLIP-base"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")]
|
61 |
+
|
62 |
+
title = "Interactive demo: comparing image captioning models"
|
63 |
+
description = "Gradio Demo to compare GIT, BLIP and ViT+GPT2, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|
64 |
+
article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"
|
65 |
+
|
66 |
+
css = """
|
67 |
+
body {
|
68 |
+
background-color: #f2f2f2;
|
69 |
+
font-family: Arial, sans-serif;
|
70 |
+
}
|
71 |
+
|
72 |
+
.title {
|
73 |
+
color: #333333;
|
74 |
+
font-size: 24px;
|
75 |
+
font-weight: bold;
|
76 |
+
margin-bottom: 20px;
|
77 |
+
}
|
78 |
+
|
79 |
+
.description {
|
80 |
+
color: #666666;
|
81 |
+
font-size: 16px;
|
82 |
+
margin-bottom: 20px;
|
83 |
+
}
|
84 |
+
|
85 |
+
.article {
|
86 |
+
color: #666666;
|
87 |
+
font-size: 14px;
|
88 |
+
margin-bottom: 20px;
|
89 |
+
text-align: center;
|
90 |
+
}
|
91 |
+
|
92 |
+
.input {
|
93 |
+
margin-bottom: 20px;
|
94 |
+
}
|
95 |
+
|
96 |
+
.output {
|
97 |
+
margin-bottom: 20px;
|
98 |
+
}
|
99 |
+
"""
|
100 |
+
|
101 |
+
interface = gr.Interface(fn=generate_captions,
|
102 |
+
inputs=gr.inputs.Image(type="pil"),
|
103 |
+
outputs=outputs,
|
104 |
+
examples=examples,
|
105 |
+
title=title,
|
106 |
+
description=description,
|
107 |
+
article=article,
|
108 |
+
css=css,
|
109 |
+
enable_queue=True)
|
110 |
+
interface.launch(debug=True)
|
111 |
+
|
112 |
+
'''
|
113 |
+
|
114 |
import gradio as gr
|
115 |
import numpy as np
|
116 |
from PIL import Image
|
|
|
154 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
155 |
|
156 |
|
157 |
+
|
158 |
import gradio as gr
|
159 |
import subprocess
|
160 |
|