ruslanmv commited on
Commit
f6b9815
·
verified ·
1 Parent(s): 7fa88e5

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +315 -1
main.py CHANGED
@@ -1,3 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import subprocess
3
  def run_command(command):
@@ -19,4 +332,5 @@ iface = gr.Interface(
19
  ["echo 'Hello, Gradio!'"],
20
  ["python --version"]]
21
  )
22
- iface.launch(server_name="0.0.0.0", server_port=7860)
 
 
1
+ run_api = False
2
+ SSD_1B = False
3
+ import os
4
+
5
+ # Use GPU
6
+ gpu_info = os.popen("nvidia-smi").read()
7
+ if "failed" in gpu_info:
8
+ print("Not connected to a GPU")
9
+ is_gpu = False
10
+ else:
11
+ print(gpu_info)
12
+ is_gpu = True
13
+ print(is_gpu)
14
+
15
+
16
+ from IPython.display import clear_output
17
+
18
+
19
+ def check_enviroment():
20
+ try:
21
+ import torch
22
+
23
+ print("Enviroment is already installed.")
24
+ except ImportError:
25
+ print("Enviroment not found. Installing...")
26
+ # Install requirements from requirements.txt
27
+ os.system("pip install -r requirements.txt")
28
+ # Install gradio version 3.48.0
29
+ os.system("pip install gradio==3.39.0")
30
+ # Install python-dotenv
31
+ os.system("pip install python-dotenv")
32
+ # Clear the output
33
+ clear_output()
34
+
35
+ print("Enviroment installed successfully.")
36
+
37
+
38
+ # Call the function to check and install Packages if necessary
39
+ check_enviroment()
40
+
41
+
42
+ from IPython.display import clear_output
43
+ import os
44
+ import gradio as gr
45
+ import numpy as np
46
+ import PIL
47
+ import base64
48
+ import io
49
+ import torch
50
+ from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
51
+
52
+ # SDXL
53
+ from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
54
+
55
+ # Get the current directory
56
+ current_dir = os.getcwd()
57
+ model_path = os.path.join(current_dir)
58
+ # Set the cache path
59
+ cache_path = os.path.join(current_dir, "cache")
60
+ MAX_SEED = np.iinfo(np.int32).max
61
+ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
62
+ SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret")
63
+
64
+ # Uncomment the following line if you are using PyTorch 1.10 or later
65
+ # os.environ["TORCH_USE_CUDA_DSA"] = "1"
66
+
67
+ if is_gpu:
68
+ # Uncomment the following line if you want to enable CUDA launch blocking
69
+ os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
70
+ else:
71
+ # Uncomment the following line if you want to use CPU instead of GPU
72
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
73
+
74
+
75
+ # Get the current directory
76
+ current_dir = os.getcwd()
77
+ model_path = os.path.join(current_dir)
78
+
79
+ # Set the cache path
80
+ cache_path = os.path.join(current_dir, "cache")
81
+
82
+ if not SSD_1B:
83
+
84
+ unet = UNet2DConditionModel.from_pretrained(
85
+ "latent-consistency/lcm-sdxl",
86
+ torch_dtype=torch.float16,
87
+ variant="fp16",
88
+ cache_dir=cache_path,
89
+ )
90
+ pipe = DiffusionPipeline.from_pretrained(
91
+ # "stabilityai/stable-diffusion-xl-base-1.0",
92
+ "stabilityai/sdxl-turbo",
93
+ unet=unet,
94
+ torch_dtype=torch.float16,
95
+ variant="fp16",
96
+ cache_dir=cache_path,
97
+ )
98
+
99
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
100
+ if torch.cuda.is_available():
101
+ pipe.to("cuda")
102
+ else:
103
+ # SSD-1B
104
+ from diffusers import LCMScheduler, AutoPipelineForText2Image
105
+
106
+ pipe = AutoPipelineForText2Image.from_pretrained(
107
+ "segmind/SSD-1B",
108
+ torch_dtype=torch.float16,
109
+ variant="fp16",
110
+ cache_dir=cache_path,
111
+ )
112
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
113
+ if torch.cuda.is_available():
114
+ pipe.to("cuda")
115
+
116
+ # load and fuse
117
+ pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
118
+ pipe.fuse_lora()
119
+
120
+
121
+ def generate(
122
+ prompt: str,
123
+ negative_prompt: str = "",
124
+ seed: int = 0,
125
+ width: int = 1024,
126
+ height: int = 1024,
127
+ guidance_scale: float = 0.0,
128
+ num_inference_steps: int = 4,
129
+ secret_token: str = "",
130
+ ) -> PIL.Image.Image:
131
+ if secret_token != SECRET_TOKEN:
132
+ raise gr.Error(
133
+ f"Invalid secret token. Please fork the original space if you want to use it for yourself."
134
+ )
135
+
136
+ generator = torch.Generator().manual_seed(seed)
137
+
138
+ image = pipe(
139
+ prompt=prompt,
140
+ negative_prompt=negative_prompt,
141
+ width=width,
142
+ height=height,
143
+ guidance_scale=guidance_scale,
144
+ num_inference_steps=num_inference_steps,
145
+ generator=generator,
146
+ output_type="pil",
147
+ ).images[0]
148
+ return image
149
+
150
+
151
+ clear_output()
152
+
153
+ from IPython.display import display
154
+
155
+
156
+ def generate_image(prompt="A beautiful and sexy girl"):
157
+ # Generate the image using the prompt
158
+ generated_image = generate(
159
+ prompt=prompt,
160
+ negative_prompt="",
161
+ seed=0,
162
+ width=1024,
163
+ height=1024,
164
+ guidance_scale=0.0,
165
+ num_inference_steps=4,
166
+ secret_token="default_secret", # Replace with your secret token
167
+ )
168
+ # Display the image in the Jupyter Notebook
169
+ display(generated_image)
170
+
171
+
172
+ if not run_api:
173
+ secret_token = gr.Text(
174
+ label="Secret Token",
175
+ max_lines=1,
176
+ placeholder="Enter your secret token",
177
+ )
178
+ prompt = gr.Text(
179
+ label="Prompt",
180
+ show_label=False,
181
+ max_lines=1,
182
+ placeholder="Enter your prompt",
183
+ container=False,
184
+ )
185
+ result = gr.Image(label="Result", show_label=False)
186
+ negative_prompt = gr.Text(
187
+ label="Negative prompt",
188
+ max_lines=1,
189
+ placeholder="Enter a negative prompt",
190
+ visible=True,
191
+ )
192
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
193
+
194
+ width = gr.Slider(
195
+ label="Width",
196
+ minimum=256,
197
+ maximum=MAX_IMAGE_SIZE,
198
+ step=32,
199
+ value=1024,
200
+ )
201
+ height = gr.Slider(
202
+ label="Height",
203
+ minimum=256,
204
+ maximum=MAX_IMAGE_SIZE,
205
+ step=32,
206
+ value=1024,
207
+ )
208
+ guidance_scale = gr.Slider(
209
+ label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0
210
+ )
211
+ num_inference_steps = gr.Slider(
212
+ label="Number of inference steps", minimum=1, maximum=8, step=1, value=4
213
+ )
214
+ inputs = [
215
+ prompt,
216
+ negative_prompt,
217
+ seed,
218
+ width,
219
+ height,
220
+ guidance_scale,
221
+ num_inference_steps,
222
+ secret_token,
223
+ ]
224
+ iface = gr.Interface(
225
+ fn=generate,
226
+ inputs=inputs,
227
+ outputs=result,
228
+ title="Image Generator",
229
+ description="Generate images based on prompts.",
230
+ )
231
+
232
+ iface.launch()
233
+
234
+
235
+ if run_api:
236
+ with gr.Blocks() as demo:
237
+ gr.HTML(
238
+ """
239
+ <div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
240
+ <div style="text-align: center; color: black;">
241
+ <p style="color: black;">This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.</p>
242
+ <p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p>
243
+ </div>
244
+ </div>"""
245
+ )
246
+ secret_token = gr.Text(
247
+ label="Secret Token",
248
+ max_lines=1,
249
+ placeholder="Enter your secret token",
250
+ )
251
+ prompt = gr.Text(
252
+ label="Prompt",
253
+ show_label=False,
254
+ max_lines=1,
255
+ placeholder="Enter your prompt",
256
+ container=False,
257
+ )
258
+ result = gr.Image(label="Result", show_label=False)
259
+ negative_prompt = gr.Text(
260
+ label="Negative prompt",
261
+ max_lines=1,
262
+ placeholder="Enter a negative prompt",
263
+ visible=True,
264
+ )
265
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
266
+
267
+ width = gr.Slider(
268
+ label="Width",
269
+ minimum=256,
270
+ maximum=MAX_IMAGE_SIZE,
271
+ step=32,
272
+ value=1024,
273
+ )
274
+ height = gr.Slider(
275
+ label="Height",
276
+ minimum=256,
277
+ maximum=MAX_IMAGE_SIZE,
278
+ step=32,
279
+ value=1024,
280
+ )
281
+ guidance_scale = gr.Slider(
282
+ label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0
283
+ )
284
+ num_inference_steps = gr.Slider(
285
+ label="Number of inference steps", minimum=1, maximum=8, step=1, value=4
286
+ )
287
+
288
+ inputs = [
289
+ prompt,
290
+ negative_prompt,
291
+ seed,
292
+ width,
293
+ height,
294
+ guidance_scale,
295
+ num_inference_steps,
296
+ secret_token,
297
+ ]
298
+ prompt.submit(
299
+ fn=generate,
300
+ inputs=inputs,
301
+ outputs=result,
302
+ api_name="run",
303
+ )
304
+
305
+ # demo.queue(max_size=32).launch()
306
+ # Launch the Gradio app with multiple workers and debug mode enabled
307
+ # demo.queue(max_size=32).launch(debug=True)# For Standard
308
+ demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860) # Docker
309
+
310
+
311
+ '''
312
+
313
+
314
  import gradio as gr
315
  import subprocess
316
  def run_command(command):
 
332
  ["echo 'Hello, Gradio!'"],
333
  ["python --version"]]
334
  )
335
+ iface.launch(server_name="0.0.0.0", server_port=7860)
336
+ '''