File size: 6,150 Bytes
55da56b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from functools import partial

import numpy as np
import torch
from timm.models.efficientnet import tf_efficientnet_b4_ns, tf_efficientnet_b3_ns, \
    tf_efficientnet_b5_ns, tf_efficientnet_b2_ns, tf_efficientnet_b6_ns, tf_efficientnet_b7
from torch import nn
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear
from torch.nn.modules.pooling import AdaptiveAvgPool2d

encoder_params = {
    "tf_efficientnet_b3_ns": {
        "features": 1536,
        "init_op": partial(tf_efficientnet_b3_ns, pretrained=True, drop_path_rate=0.2)
    },
    "tf_efficientnet_b2_ns": {
        "features": 1408,
        "init_op": partial(tf_efficientnet_b2_ns, pretrained=False, drop_path_rate=0.2)
    },
    "tf_efficientnet_b4_ns": {
        "features": 1792,
        "init_op": partial(tf_efficientnet_b4_ns, pretrained=True, drop_path_rate=0.5)
    },
    "tf_efficientnet_b5_ns": {
        "features": 2048,
        "init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.2)
    },
    "tf_efficientnet_b4_ns_03d": {
        "features": 1792,
        "init_op": partial(tf_efficientnet_b4_ns, pretrained=True, drop_path_rate=0.3)
    },
    "tf_efficientnet_b5_ns_03d": {
        "features": 2048,
        "init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.3)
    },
    "tf_efficientnet_b5_ns_04d": {
        "features": 2048,
        "init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.4)
    },
    "tf_efficientnet_b6_ns": {
        "features": 2304,
        "init_op": partial(tf_efficientnet_b6_ns, pretrained=True, drop_path_rate=0.2)
    },
    "tf_efficientnet_b7": {
        "features": 2560,
        "init_op": partial(tf_efficientnet_b7, pretrained=True, drop_path_rate=0.2)
    },
    "tf_efficientnet_b6_ns_04d": {
        "features": 2304,
        "init_op": partial(tf_efficientnet_b6_ns, pretrained=True, drop_path_rate=0.4)
    },
}


def setup_srm_weights(input_channels: int = 3) -> torch.Tensor:
    """Creates the SRM kernels for noise analysis."""
    # note: values taken from Zhou et al., "Learning Rich Features for Image Manipulation Detection", CVPR2018
    srm_kernel = torch.from_numpy(np.array([
        [  # srm 1/2 horiz
            [0., 0., 0., 0., 0.],  # noqa: E241,E201
            [0., 0., 0., 0., 0.],  # noqa: E241,E201
            [0., 1., -2., 1., 0.],  # noqa: E241,E201
            [0., 0., 0., 0., 0.],  # noqa: E241,E201
            [0., 0., 0., 0., 0.],  # noqa: E241,E201
        ], [  # srm 1/4
            [0., 0., 0., 0., 0.],  # noqa: E241,E201
            [0., -1., 2., -1., 0.],  # noqa: E241,E201
            [0., 2., -4., 2., 0.],  # noqa: E241,E201
            [0., -1., 2., -1., 0.],  # noqa: E241,E201
            [0., 0., 0., 0., 0.],  # noqa: E241,E201
        ], [  # srm 1/12
            [-1., 2., -2., 2., -1.],  # noqa: E241,E201
            [2., -6., 8., -6., 2.],  # noqa: E241,E201
            [-2., 8., -12., 8., -2.],  # noqa: E241,E201
            [2., -6., 8., -6., 2.],  # noqa: E241,E201
            [-1., 2., -2., 2., -1.],  # noqa: E241,E201
        ]
    ])).float()
    srm_kernel[0] /= 2
    srm_kernel[1] /= 4
    srm_kernel[2] /= 12
    return srm_kernel.view(3, 1, 5, 5).repeat(1, input_channels, 1, 1)


def setup_srm_layer(input_channels: int = 3) -> torch.nn.Module:
    """Creates a SRM convolution layer for noise analysis."""
    weights = setup_srm_weights(input_channels)
    conv = torch.nn.Conv2d(input_channels, out_channels=3, kernel_size=5, stride=1, padding=2, bias=False)
    with torch.no_grad():
        conv.weight = torch.nn.Parameter(weights, requires_grad=False)
    return conv


class DeepFakeClassifierSRM(nn.Module):
    def __init__(self, encoder, dropout_rate=0.5) -> None:
        super().__init__()
        self.encoder = encoder_params[encoder]["init_op"]()
        self.avg_pool = AdaptiveAvgPool2d((1, 1))
        self.srm_conv = setup_srm_layer(3)
        self.dropout = Dropout(dropout_rate)
        self.fc = Linear(encoder_params[encoder]["features"], 1)

    def forward(self, x):
        noise = self.srm_conv(x)
        x = self.encoder.forward_features(noise)
        x = self.avg_pool(x).flatten(1)
        x = self.dropout(x)
        x = self.fc(x)
        return x


class GlobalWeightedAvgPool2d(nn.Module):
    """
    Global Weighted Average Pooling from paper "Global Weighted Average
    Pooling Bridges Pixel-level Localization and Image-level Classification"
    """

    def __init__(self, features: int, flatten=False):
        super().__init__()
        self.conv = nn.Conv2d(features, 1, kernel_size=1, bias=True)
        self.flatten = flatten

    def fscore(self, x):
        m = self.conv(x)
        m = m.sigmoid().exp()
        return m

    def norm(self, x: torch.Tensor):
        return x / x.sum(dim=[2, 3], keepdim=True)

    def forward(self, x):
        input_x = x
        x = self.fscore(x)
        x = self.norm(x)
        x = x * input_x
        x = x.sum(dim=[2, 3], keepdim=not self.flatten)
        return x


class DeepFakeClassifier(nn.Module):
    def __init__(self, encoder, dropout_rate=0.0) -> None:
        super().__init__()
        self.encoder = encoder_params[encoder]["init_op"]()
        self.avg_pool = AdaptiveAvgPool2d((1, 1))
        self.dropout = Dropout(dropout_rate)
        self.fc = Linear(encoder_params[encoder]["features"], 1)

    def forward(self, x):
        x = self.encoder.forward_features(x)
        x = self.avg_pool(x).flatten(1)
        x = self.dropout(x)
        x = self.fc(x)
        return x




class DeepFakeClassifierGWAP(nn.Module):
    def __init__(self, encoder, dropout_rate=0.5) -> None:
        super().__init__()
        self.encoder = encoder_params[encoder]["init_op"]()
        self.avg_pool = GlobalWeightedAvgPool2d(encoder_params[encoder]["features"])
        self.dropout = Dropout(dropout_rate)
        self.fc = Linear(encoder_params[encoder]["features"], 1)

    def forward(self, x):
        x = self.encoder.forward_features(x)
        x = self.avg_pool(x).flatten(1)
        x = self.dropout(x)
        x = self.fc(x)
        return x