Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from albumentations.augmentations.functional import image_compression | |
from facenet_pytorch.models.mtcnn import MTCNN | |
from concurrent.futures import ThreadPoolExecutor | |
from torchvision.transforms import Normalize | |
mean = [0.485, 0.456, 0.406] | |
std = [0.229, 0.224, 0.225] | |
normalize_transform = Normalize(mean, std) | |
class VideoReader: | |
"""Helper class for reading one or more frames from a video file.""" | |
def __init__(self, verbose=True, insets=(0, 0)): | |
"""Creates a new VideoReader. | |
Arguments: | |
verbose: whether to print warnings and error messages | |
insets: amount to inset the image by, as a percentage of | |
(width, height). This lets you "zoom in" to an image | |
to remove unimportant content around the borders. | |
Useful for face detection, which may not work if the | |
faces are too small. | |
""" | |
self.verbose = verbose | |
self.insets = insets | |
def read_frames(self, path, num_frames, jitter=0, seed=None): | |
"""Reads frames that are always evenly spaced throughout the video. | |
Arguments: | |
path: the video file | |
num_frames: how many frames to read, -1 means the entire video | |
(warning: this will take up a lot of memory!) | |
jitter: if not 0, adds small random offsets to the frame indices; | |
this is useful so we don't always land on even or odd frames | |
seed: random seed for jittering; if you set this to a fixed value, | |
you probably want to set it only on the first video | |
""" | |
assert num_frames > 0 | |
capture = cv2.VideoCapture(path) | |
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if frame_count <= 0: return None | |
frame_idxs = np.linspace(0, frame_count - 1, num_frames, endpoint=True, dtype=np.int) | |
if jitter > 0: | |
np.random.seed(seed) | |
jitter_offsets = np.random.randint(-jitter, jitter, len(frame_idxs)) | |
frame_idxs = np.clip(frame_idxs + jitter_offsets, 0, frame_count - 1) | |
result = self._read_frames_at_indices(path, capture, frame_idxs) | |
capture.release() | |
return result | |
def read_random_frames(self, path, num_frames, seed=None): | |
"""Picks the frame indices at random. | |
Arguments: | |
path: the video file | |
num_frames: how many frames to read, -1 means the entire video | |
(warning: this will take up a lot of memory!) | |
""" | |
assert num_frames > 0 | |
np.random.seed(seed) | |
capture = cv2.VideoCapture(path) | |
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if frame_count <= 0: return None | |
frame_idxs = sorted(np.random.choice(np.arange(0, frame_count), num_frames)) | |
result = self._read_frames_at_indices(path, capture, frame_idxs) | |
capture.release() | |
return result | |
def read_frames_at_indices(self, path, frame_idxs): | |
"""Reads frames from a video and puts them into a NumPy array. | |
Arguments: | |
path: the video file | |
frame_idxs: a list of frame indices. Important: should be | |
sorted from low-to-high! If an index appears multiple | |
times, the frame is still read only once. | |
Returns: | |
- a NumPy array of shape (num_frames, height, width, 3) | |
- a list of the frame indices that were read | |
Reading stops if loading a frame fails, in which case the first | |
dimension returned may actually be less than num_frames. | |
Returns None if an exception is thrown for any reason, or if no | |
frames were read. | |
""" | |
assert len(frame_idxs) > 0 | |
capture = cv2.VideoCapture(path) | |
result = self._read_frames_at_indices(path, capture, frame_idxs) | |
capture.release() | |
return result | |
def _read_frames_at_indices(self, path, capture, frame_idxs): | |
try: | |
frames = [] | |
idxs_read = [] | |
for frame_idx in range(frame_idxs[0], frame_idxs[-1] + 1): | |
# Get the next frame, but don't decode if we're not using it. | |
ret = capture.grab() | |
if not ret: | |
if self.verbose: | |
print("Error grabbing frame %d from movie %s" % (frame_idx, path)) | |
break | |
# Need to look at this frame? | |
current = len(idxs_read) | |
if frame_idx == frame_idxs[current]: | |
ret, frame = capture.retrieve() | |
if not ret or frame is None: | |
if self.verbose: | |
print("Error retrieving frame %d from movie %s" % (frame_idx, path)) | |
break | |
frame = self._postprocess_frame(frame) | |
frames.append(frame) | |
idxs_read.append(frame_idx) | |
if len(frames) > 0: | |
return np.stack(frames), idxs_read | |
if self.verbose: | |
print("No frames read from movie %s" % path) | |
return None | |
except: | |
if self.verbose: | |
print("Exception while reading movie %s" % path) | |
return None | |
def read_middle_frame(self, path): | |
"""Reads the frame from the middle of the video.""" | |
capture = cv2.VideoCapture(path) | |
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) | |
result = self._read_frame_at_index(path, capture, frame_count // 2) | |
capture.release() | |
return result | |
def read_frame_at_index(self, path, frame_idx): | |
"""Reads a single frame from a video. | |
If you just want to read a single frame from the video, this is more | |
efficient than scanning through the video to find the frame. However, | |
for reading multiple frames it's not efficient. | |
My guess is that a "streaming" approach is more efficient than a | |
"random access" approach because, unless you happen to grab a keyframe, | |
the decoder still needs to read all the previous frames in order to | |
reconstruct the one you're asking for. | |
Returns a NumPy array of shape (1, H, W, 3) and the index of the frame, | |
or None if reading failed. | |
""" | |
capture = cv2.VideoCapture(path) | |
result = self._read_frame_at_index(path, capture, frame_idx) | |
capture.release() | |
return result | |
def _read_frame_at_index(self, path, capture, frame_idx): | |
capture.set(cv2.CAP_PROP_POS_FRAMES, frame_idx) | |
ret, frame = capture.read() | |
if not ret or frame is None: | |
if self.verbose: | |
print("Error retrieving frame %d from movie %s" % (frame_idx, path)) | |
return None | |
else: | |
frame = self._postprocess_frame(frame) | |
return np.expand_dims(frame, axis=0), [frame_idx] | |
def _postprocess_frame(self, frame): | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
if self.insets[0] > 0: | |
W = frame.shape[1] | |
p = int(W * self.insets[0]) | |
frame = frame[:, p:-p, :] | |
if self.insets[1] > 0: | |
H = frame.shape[1] | |
q = int(H * self.insets[1]) | |
frame = frame[q:-q, :, :] | |
return frame | |
class FaceExtractor: | |
def __init__(self, video_read_fn): | |
self.video_read_fn = video_read_fn | |
self.detector = MTCNN(margin=0, thresholds=[0.7, 0.8, 0.8], device="cpu") | |
def process_videos(self, video, video_idxs): | |
videos_read = [] | |
frames_read = [] | |
frames = [] | |
results = [] | |
for video_idx in video_idxs: | |
# Read the full-size frames from this video. | |
result = self.video_read_fn(video) | |
# Error? Then skip this video. | |
if result is None: continue | |
videos_read.append(video_idx) | |
# Keep track of the original frames (need them later). | |
my_frames, my_idxs = result | |
frames.append(my_frames) | |
frames_read.append(my_idxs) | |
for i, frame in enumerate(my_frames): | |
h, w = frame.shape[:2] | |
img = Image.fromarray(frame.astype(np.uint8)) | |
img = img.resize(size=[s // 2 for s in img.size]) | |
batch_boxes, probs = self.detector.detect(img, landmarks=False) | |
faces = [] | |
scores = [] | |
if batch_boxes is None: | |
continue | |
for bbox, score in zip(batch_boxes, probs): | |
if bbox is not None: | |
xmin, ymin, xmax, ymax = [int(b * 2) for b in bbox] | |
w = xmax - xmin | |
h = ymax - ymin | |
p_h = h // 3 | |
p_w = w // 3 | |
crop = frame[max(ymin - p_h, 0):ymax + p_h, max(xmin - p_w, 0):xmax + p_w] | |
faces.append(crop) | |
scores.append(score) | |
frame_dict = {"video_idx": video_idx, | |
"frame_idx": my_idxs[i], | |
"frame_w": w, | |
"frame_h": h, | |
"faces": faces, | |
"scores": scores} | |
results.append(frame_dict) | |
return results | |
def process_video(self, video): | |
"""Convenience method for doing face extraction on a single video.""" | |
return self.process_videos(video, [0]) | |
def confident_strategy(pred, t=0.8): | |
pred = np.array(pred) | |
sz = len(pred) | |
fakes = np.count_nonzero(pred > t) | |
# 11 frames are detected as fakes with high probability | |
if fakes > sz // 2.5 and fakes > 11: | |
return np.mean(pred[pred > t]) | |
elif np.count_nonzero(pred < 0.2) > 0.9 * sz: | |
return np.mean(pred[pred < 0.2]) | |
else: | |
return np.mean(pred) | |
strategy = confident_strategy | |
def put_to_center(img, input_size): | |
img = img[:input_size, :input_size] | |
image = np.zeros((input_size, input_size, 3), dtype=np.uint8) | |
start_w = (input_size - img.shape[1]) // 2 | |
start_h = (input_size - img.shape[0]) // 2 | |
image[start_h:start_h + img.shape[0], start_w: start_w + img.shape[1], :] = img | |
return image | |
def isotropically_resize_image(img, size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC): | |
h, w = img.shape[:2] | |
if max(w, h) == size: | |
return img | |
if w > h: | |
scale = size / w | |
h = h * scale | |
w = size | |
else: | |
scale = size / h | |
w = w * scale | |
h = size | |
interpolation = interpolation_up if scale > 1 else interpolation_down | |
resized = cv2.resize(img, (int(w), int(h)), interpolation=interpolation) | |
return resized | |
def predict_on_video(face_extractor, video, batch_size, input_size, models, strategy=np.mean, | |
apply_compression=False): | |
batch_size *= 4 | |
try: | |
faces = face_extractor.process_video(video) | |
if len(faces) > 0: | |
x = np.zeros((batch_size, input_size, input_size, 3), dtype=np.uint8) | |
n = 0 | |
for frame_data in faces: | |
for face in frame_data["faces"]: | |
resized_face = isotropically_resize_image(face, input_size) | |
resized_face = put_to_center(resized_face, input_size) | |
if apply_compression: | |
resized_face = image_compression(resized_face, quality=90, image_type=".jpg") | |
if n + 1 < batch_size: | |
x[n] = resized_face | |
n += 1 | |
else: | |
pass | |
if n > 0: | |
x = torch.tensor(x, device="cpu").float() | |
# Preprocess the images. | |
x = x.permute((0, 3, 1, 2)) | |
for i in range(len(x)): | |
x[i] = normalize_transform(x[i] / 255.) | |
# Make a prediction, then take the average. | |
with torch.no_grad(): | |
preds = [] | |
for model in models: | |
y_pred = model(x[:n].float()) | |
y_pred = torch.sigmoid(y_pred.squeeze()) | |
bpred = y_pred[:n].cpu().numpy() | |
preds.append(strategy(bpred)) | |
return np.mean(preds) | |
except Exception as e: | |
print("Prediction error on video: %s" % str(e)) | |
return 0.5 | |
def predict_on_video_set(face_extractor, videos, input_size, num_workers, test_dir, frames_per_video, models, | |
strategy=np.mean, | |
apply_compression=False): | |
def process_file(i): | |
filename = videos[i] | |
y_pred = predict_on_video(face_extractor=face_extractor, video_path=os.path.join(test_dir, filename), | |
input_size=input_size, | |
batch_size=frames_per_video, | |
models=models, strategy=strategy, apply_compression=apply_compression) | |
return y_pred | |
with ThreadPoolExecutor(max_workers=num_workers) as ex: | |
predictions = ex.map(process_file, range(len(videos))) | |
return list(predictions) |