from functools import partial import numpy as np import torch from timm.models.efficientnet import tf_efficientnet_b4_ns, tf_efficientnet_b3_ns, \ tf_efficientnet_b5_ns, tf_efficientnet_b2_ns, tf_efficientnet_b6_ns, tf_efficientnet_b7 from torch import nn from torch.nn.modules.dropout import Dropout from torch.nn.modules.linear import Linear from torch.nn.modules.pooling import AdaptiveAvgPool2d encoder_params = { "tf_efficientnet_b3_ns": { "features": 1536, "init_op": partial(tf_efficientnet_b3_ns, pretrained=True, drop_path_rate=0.2) }, "tf_efficientnet_b2_ns": { "features": 1408, "init_op": partial(tf_efficientnet_b2_ns, pretrained=False, drop_path_rate=0.2) }, "tf_efficientnet_b4_ns": { "features": 1792, "init_op": partial(tf_efficientnet_b4_ns, pretrained=True, drop_path_rate=0.5) }, "tf_efficientnet_b5_ns": { "features": 2048, "init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.2) }, "tf_efficientnet_b4_ns_03d": { "features": 1792, "init_op": partial(tf_efficientnet_b4_ns, pretrained=True, drop_path_rate=0.3) }, "tf_efficientnet_b5_ns_03d": { "features": 2048, "init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.3) }, "tf_efficientnet_b5_ns_04d": { "features": 2048, "init_op": partial(tf_efficientnet_b5_ns, pretrained=True, drop_path_rate=0.4) }, "tf_efficientnet_b6_ns": { "features": 2304, "init_op": partial(tf_efficientnet_b6_ns, pretrained=True, drop_path_rate=0.2) }, "tf_efficientnet_b7": { "features": 2560, "init_op": partial(tf_efficientnet_b7, pretrained=True, drop_path_rate=0.2) }, "tf_efficientnet_b6_ns_04d": { "features": 2304, "init_op": partial(tf_efficientnet_b6_ns, pretrained=True, drop_path_rate=0.4) }, } def setup_srm_weights(input_channels: int = 3) -> torch.Tensor: """Creates the SRM kernels for noise analysis.""" # note: values taken from Zhou et al., "Learning Rich Features for Image Manipulation Detection", CVPR2018 srm_kernel = torch.from_numpy(np.array([ [ # srm 1/2 horiz [0., 0., 0., 0., 0.], # noqa: E241,E201 [0., 0., 0., 0., 0.], # noqa: E241,E201 [0., 1., -2., 1., 0.], # noqa: E241,E201 [0., 0., 0., 0., 0.], # noqa: E241,E201 [0., 0., 0., 0., 0.], # noqa: E241,E201 ], [ # srm 1/4 [0., 0., 0., 0., 0.], # noqa: E241,E201 [0., -1., 2., -1., 0.], # noqa: E241,E201 [0., 2., -4., 2., 0.], # noqa: E241,E201 [0., -1., 2., -1., 0.], # noqa: E241,E201 [0., 0., 0., 0., 0.], # noqa: E241,E201 ], [ # srm 1/12 [-1., 2., -2., 2., -1.], # noqa: E241,E201 [2., -6., 8., -6., 2.], # noqa: E241,E201 [-2., 8., -12., 8., -2.], # noqa: E241,E201 [2., -6., 8., -6., 2.], # noqa: E241,E201 [-1., 2., -2., 2., -1.], # noqa: E241,E201 ] ])).float() srm_kernel[0] /= 2 srm_kernel[1] /= 4 srm_kernel[2] /= 12 return srm_kernel.view(3, 1, 5, 5).repeat(1, input_channels, 1, 1) def setup_srm_layer(input_channels: int = 3) -> torch.nn.Module: """Creates a SRM convolution layer for noise analysis.""" weights = setup_srm_weights(input_channels) conv = torch.nn.Conv2d(input_channels, out_channels=3, kernel_size=5, stride=1, padding=2, bias=False) with torch.no_grad(): conv.weight = torch.nn.Parameter(weights, requires_grad=False) return conv class DeepFakeClassifierSRM(nn.Module): def __init__(self, encoder, dropout_rate=0.5) -> None: super().__init__() self.encoder = encoder_params[encoder]["init_op"]() self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.srm_conv = setup_srm_layer(3) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_params[encoder]["features"], 1) def forward(self, x): noise = self.srm_conv(x) x = self.encoder.forward_features(noise) x = self.avg_pool(x).flatten(1) x = self.dropout(x) x = self.fc(x) return x class GlobalWeightedAvgPool2d(nn.Module): """ Global Weighted Average Pooling from paper "Global Weighted Average Pooling Bridges Pixel-level Localization and Image-level Classification" """ def __init__(self, features: int, flatten=False): super().__init__() self.conv = nn.Conv2d(features, 1, kernel_size=1, bias=True) self.flatten = flatten def fscore(self, x): m = self.conv(x) m = m.sigmoid().exp() return m def norm(self, x: torch.Tensor): return x / x.sum(dim=[2, 3], keepdim=True) def forward(self, x): input_x = x x = self.fscore(x) x = self.norm(x) x = x * input_x x = x.sum(dim=[2, 3], keepdim=not self.flatten) return x class DeepFakeClassifier(nn.Module): def __init__(self, encoder, dropout_rate=0.0) -> None: super().__init__() self.encoder = encoder_params[encoder]["init_op"]() self.avg_pool = AdaptiveAvgPool2d((1, 1)) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_params[encoder]["features"], 1) def forward(self, x): x = self.encoder.forward_features(x) x = self.avg_pool(x).flatten(1) x = self.dropout(x) x = self.fc(x) return x class DeepFakeClassifierGWAP(nn.Module): def __init__(self, encoder, dropout_rate=0.5) -> None: super().__init__() self.encoder = encoder_params[encoder]["init_op"]() self.avg_pool = GlobalWeightedAvgPool2d(encoder_params[encoder]["features"]) self.dropout = Dropout(dropout_rate) self.fc = Linear(encoder_params[encoder]["features"], 1) def forward(self, x): x = self.encoder.forward_features(x) x = self.avg_pool(x).flatten(1) x = self.dropout(x) x = self.fc(x) return x