import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline from threading import Thread model_id = "rasyosef/Llama-3.2-180M-Amharic-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) llama_am = pipeline( "text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) # Function that accepts a prompt and generates text using the phi2 pipeline def generate(message, chat_history, max_new_tokens=64): history = [] for sent, received in chat_history: history.append({"role": "user", "content": sent}) history.append({"role": "assistant", "content": received}) history.append({"role": "user", "content": message}) #print(history) if len(tokenizer.apply_chat_template(history)) > 512: yield "chat history is too long" else: # Streamer streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0) thread = Thread(target=llama_am, kwargs={ "text_inputs":history, "max_new_tokens":max_new_tokens, "repetition_penalty":1.15, "streamer":streamer } ) thread.start() generated_text = "" for word in streamer: generated_text += word response = generated_text.strip() yield response # Chat interface with gradio with gr.Blocks() as demo: gr.Markdown(""" # Llama 3.2 180M Amharic Chatbot Demo This chatbot was created using [Llama-3.2-180M-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic-Instruct), a finetuned version of my 180 million parameter [Llama 3.2 180M Amharic](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic) transformer model. """) tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.") chatbot = gr.ChatInterface( chatbot=gr.Chatbot(height=400), fn=generate, additional_inputs=[tokens_slider], stop_btn=None, cache_examples=False, examples=[ ["ሰላም፣ እንዴት ነህ?"], ["የኢትዮጵያ ዋና ከተማ ስም ምንድን ነው?"], ["የኢትዮጵያ የመጨረሻው ንጉስ ማን ነበሩ?"], ["የአማርኛ ግጥም ፃፍልኝ"], ["ተረት ንገረኝ\n\nጅብና አንበሳ"], ["አንድ አስቂኝ ቀልድ ንገረኝ"], ["የተሰጠው ጽሑፍ አስተያየት ምን አይነት ነው? 'አዎንታዊ'፣ 'አሉታዊ' ወይም 'ገለልተኛ' የሚል ምላሽ ስጥ። 'አሪፍ ፊልም ነበር'"], ["የፈረንሳይ ዋና ከተማ ስም ምንድን ነው?"], ["አሁን የአሜሪካ ፕሬዚዳንት ማን ነው?"], ["ሶስት የአፍሪካ ሀገራት ጥቀስልኝ"], ["3 የአሜሪካ መሪዎችን ስም ጥቀስ"], ["5 የአሜሪካ ከተማዎችን ጥቀስ"], ["አምስት የአውሮፓ ሀገሮችን ጥቀስልኝ"], ["በ ዓለም ላይ ያሉትን 7 አህጉራት ንገረኝ"] ] ) demo.queue().launch(debug=True,share=True) # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch()