Spaces:
Sleeping
Sleeping
File size: 5,630 Bytes
804a5d9 04080ca 804a5d9 537e3aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
import nltk
import tensorflow as tf
import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
import seaborn as sns
from transformers import BertTokenizer
from transformers import TFBertForSequenceClassification
nltk.download('punkt')
nltk.download('stopwords')
df = pd.read_csv("dataset_tweet_sentiment_pilkada_DKI_2017.csv")
df.rename(columns={
'Sentiment': 'sentiment',
'Pasangan Calon': 'calon',
'Text Tweet': 'text'
}, inplace=True)
df.dropna(inplace=True)
#preprocessing
def clean_text(text):
text = re.sub(r"https?://\S+|www\.\S+", "", text) #hapus url
text = re.sub(r"@\S+", "", text) #hapus mention
text = re.sub(r"#\S+", "", text) #hapus hastag
text = re.sub(r"\d+", "", text) #hapus nomor
text = re.sub(r"[^\w\s]", "", text) #hapus tanda baca
text = re.sub(r"(.)\1{2,}", r"\1", text) #hapus double karakter
text = text.strip() #hapus spasi di depan dan di belakang
text = text.lower() #ubah menjadi huruf kecil
return text
stopword_pilkada = pd.read_csv("stopword_tweet_pilkada_DKI_2017.csv", header=None)
stopword_pilkada.columns = ['stopword']
stop_words = set(stopwords.words('indonesian'))
additional_sw = set(stopword_pilkada.stopword.values)
stop_words = stop_words.union(additional_sw)
def remove_stopwords(text):
word_tokens = word_tokenize(text)
filtered_sentence = [w for w in word_tokens if not w in stop_words]
return " ".join(filtered_sentence)
def preprocess_text(text):
text = clean_text(text)
text = remove_stopwords(text)
return(text)
text_to_process = "sangat gak bagus pak ahok"
processed_text = preprocess_text(text_to_process)
print(processed_text)
df_train, df_test = train_test_split(df, test_size=0.3, random_state=42)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=42)
print("Train Data Size: ", len(df_train)) #70%
print("Validation Data Size: ", len(df_val)) #15%
print("Test Data Size: ", len(df_test)) #15%
PRETRAINED_MODEL = "indobenchmark/indobert-base-p2"
tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL)
vocab = tokenizer.get_vocab()
#mengecek distrubusi data untuk mengetahui panjang maksimal untuk token
token_lens = []
for txt in df["text"]:
tokens = tokenizer.encode(txt)
token_lens.append(len(tokens))
MAX_LEN = 60
df_train['sentiment'] = df_train['sentiment'].map({'positive': 1, 'negative': 0})
df_val['sentiment'] = df_val['sentiment'].map({'positive': 1, 'negative': 0})
def encode_sentence(sent):
return tokenizer.encode_plus(
sent,
add_special_tokens =True,
padding = 'max_length',
truncation = 'longest_first',
max_length = MAX_LEN,
return_attention_mask =True,
return_token_type_ids=True
)
def map_example_to_dict(input_ids, attention_masks, token_type_ids, label):
return{
"input_ids": input_ids,
"attention_mask": attention_masks,
"token_type_ids": token_type_ids,
}, label
def encode_dataset(ds, limit=-1):
input_ids_list = []
attention_mask_list = []
token_type_ids_list = []
label_list = []
for index, row in ds.iterrows():
if limit > 0 and index >= limit:
break
input_ids, attention_mask, token_type_ids =encode_sentence(row["text"])["input_ids"],\
encode_sentence(row["text"])["attention_mask"],\
encode_sentence(row["text"])["token_type_ids"]
label = row["sentiment"]
input_ids_list.append(input_ids)
attention_mask_list.append(attention_mask)
token_type_ids_list.append(token_type_ids)
label_list.append(label)
return tf.data.Dataset.from_tensor_slices((
input_ids_list,
attention_mask_list,
token_type_ids_list,
label_list
)).map(map_example_to_dict)
EPOCH = 1
BATCH_SIZE = 42
LEARNING_RATE = 1e-5
df_train_shuffled = df_train.sample(frac=1, random_state=42)
train_data = encode_dataset(df_train_shuffled).batch(BATCH_SIZE)
val_data = encode_dataset(df_val).batch(BATCH_SIZE)
test_data = encode_dataset(df_test).batch(BATCH_SIZE)
model = TFBertForSequenceClassification.from_pretrained(PRETRAINED_MODEL, num_labels=2)
model.summary()
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer, loss=loss, metrics=[metric])
history = model.fit(
train_data,
epochs=EPOCH,
batch_size=BATCH_SIZE,
validation_data=val_data
)
# Convert string labels to numeric format for the test dataset
df_test['sentiment'] = df_test['sentiment'].map({'positive': 1, 'negative': 0})
# Create the test_data with the updated DataFrame
test_data = encode_dataset(df_test).batch(BATCH_SIZE)
# Evaluate the model
model.evaluate(test_data)
y_pred = model.predict(test_data)
y_actual = np.concatenate([y for x, y in test_data], axis=0)
labels = ["negative", "positive"]
def predict(text):
input_ids, attention_mask, token_type_ids = encode_sentence(text)["input_ids"],\
encode_sentence(text)["attention_mask"],\
encode_sentence(text)["token_type_ids"]
input_ids = tf.expand_dims(input_ids, 0)
attention_mask = tf.expand_dims(attention_mask, 0)
token_type_ids = tf.expand_dims(token_type_ids, 0)
outputs = model([input_ids, attention_mask, token_type_ids])
return labels[np.argmax(tf.nn.softmax(outputs[0], axis=1).numpy()[0])] |