Spaces:
Sleeping
Sleeping
File size: 6,806 Bytes
77b8357 6b31d07 affac96 a1e8d8f bae5b02 73a141a 37c02da 1cdc167 5320c7c 73a141a e18b966 667b2dc 73a141a 44ab821 a1e8d8f 1cdc167 7c45b28 6c42480 5320c7c d9be7b0 5320c7c 6b31d07 2da8950 6b31d07 11b16f9 6b31d07 11b16f9 90e81fe 9546f1b 90e81fe 9546f1b 6b31d07 b982841 6b31d07 d9be7b0 6b31d07 33dddeb 0e71847 d9be7b0 9546f1b 5941228 6b31d07 2da8950 6c42480 5320c7c 6a04a92 f478057 6b31d07 a874e7a 6b31d07 acae979 6b31d07 d9be7b0 9a1c32e d9be7b0 f478057 d9be7b0 9a1c32e f5d4c8d 5320c7c 2fa0584 5320c7c f478057 6b31d07 44ab821 6b31d07 eb37076 2394274 eb37076 2394274 6b31d07 c6bb28f 25279a1 f478057 25279a1 2394274 c6bb28f 6b31d07 d9be7b0 6b31d07 d9be7b0 6b31d07 bce19a7 6b31d07 d9be7b0 0831a35 bce19a7 eeba367 b77d45c 6b31d07 4459ac3 6b31d07 d9be7b0 aa18bf6 6b31d07 6f08e8f 6b31d07 d9be7b0 b982841 6b31d07 d9be7b0 6b31d07 119f6c6 6c42480 6570355 6b31d07 51b7af6 6b31d07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import openai
import requests
import csv
import os
import langchain
import chromadb
import glob
import pickle
from PyPDF2 import PdfReader
from PyPDF2 import PdfWriter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain
openai.api_key = os.environ['openai_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
prompt_templates = {"All Needs Experts": "Respond as if you are combiation of all needs assessment experts."}
actor_description = {"All Needs Experts": "A combiation of all needs assessment experts."}
def get_empty_state():
return {"total_tokens": 0, "messages": []}
def download_prompt_templates():
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
try:
response = requests.get(url)
reader = csv.reader(response.text.splitlines())
next(reader) # skip the header row
for row in reader:
if len(row) >= 2:
act = row[0].strip('"')
prompt = row[1].strip('"')
description = row[2].strip('"')
prompt_templates[act] = prompt
actor_description[act] = description
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading prompt templates: {e}")
return
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
def on_prompt_template_change_description(prompt_template):
if not isinstance(prompt_template, str): return
return actor_description[prompt_template]
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']}", state
prompt_template = prompt_templates[prompt_template]
system_prompt = []
if prompt_template:
system_prompt = [{ "role": "system", "content": prompt_template }]
prompt_msg = { "role": "user", "content": prompt }
try:
with open("embeddings.pkl", 'rb') as f:
new_docsearch = pickle.load(f)
query = str(system_prompt + history + [prompt_msg])
docs = new_docsearch.similarity_search(query)
chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff")
completion = chain.run(input_documents=docs, question=query)
completion = { "content": completion }
get_empty_state()
state.append(completion.copy())
state['total_tokens'] += completion['usage']['total_tokens']
except Exception as e:
history.append(prompt_msg.copy())
error = {
"role": "system",
"content": f"Error: {e}"
}
history.append(error.copy())
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
chat_messages = [(prompt_msg['content'], completion['content'])]
return '', chat_messages, total_tokens_used_msg, state
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px; min-height: 150px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""## Ask questions of *needs assessment* experts,
## get responses from a *needs assessment experts* version of ChatGPT.
Ask questions of all of them, or pick your expert below.""" ,
elem_id="header")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question", visible=True).style(container=False)
btn_submit = gr.Button("Submit")
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
btn_clear_conversation = gr.Button("Start New Conversation")
with gr.Column():
prompt_template = gr.Dropdown(label="Choose an Expert:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = More AI, Lower = More Expert")
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Length of Response.")
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context Length", info="Number of previous questions you have asked.")
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
demo.queue(concurrency_count=10)
demo.launch(height='800px')
|