Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,8 +24,6 @@ from itertools import combinations
|
|
24 |
import pypdf
|
25 |
import requests
|
26 |
|
27 |
-
from chromadb.utils import embedding_functions
|
28 |
-
from chromadb import Documents, EmbeddingFunction, Embeddings
|
29 |
|
30 |
# LLM: openai and google_genai
|
31 |
import openai
|
@@ -87,13 +85,6 @@ cohere_api_key = os.environ['cohere_api']
|
|
87 |
|
88 |
current_dir = os.getcwd()
|
89 |
|
90 |
-
# for new Chromadb
|
91 |
-
class MyEmbeddingFunction(EmbeddingFunction[Documents]):
|
92 |
-
def __call__(self, input: Documents) -> Embeddings:
|
93 |
-
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="BAAI/bge-large-en-v1.5")
|
94 |
-
embeddings = sentence_transformer_ef(input)
|
95 |
-
return embeddings
|
96 |
-
custom = MyEmbeddingFunction()
|
97 |
|
98 |
|
99 |
|
@@ -255,8 +246,7 @@ embeddings_HuggingFace = select_embeddings_model(LLM_service="HuggingFace")
|
|
255 |
def create_vectorstore(embeddings,documents,vectorstore_name):
|
256 |
"""Create a Chroma vector database."""
|
257 |
persist_directory = (current_dir + "/" + vectorstore_name)
|
258 |
-
|
259 |
-
embedding_function=custom
|
260 |
vector_store = Chroma.from_documents(
|
261 |
documents=documents,
|
262 |
embedding=embeddings,
|
|
|
24 |
import pypdf
|
25 |
import requests
|
26 |
|
|
|
|
|
27 |
|
28 |
# LLM: openai and google_genai
|
29 |
import openai
|
|
|
85 |
|
86 |
current_dir = os.getcwd()
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
|
|
|
246 |
def create_vectorstore(embeddings,documents,vectorstore_name):
|
247 |
"""Create a Chroma vector database."""
|
248 |
persist_directory = (current_dir + "/" + vectorstore_name)
|
249 |
+
embedding_function=embeddings
|
|
|
250 |
vector_store = Chroma.from_documents(
|
251 |
documents=documents,
|
252 |
embedding=embeddings,
|