ryanrwatkins commited on
Commit
a46ee28
·
verified ·
1 Parent(s): ef19775

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -7
app.py CHANGED
@@ -114,9 +114,9 @@ prompt_templates = {"All Needs Experts": "Respond as if you are combination of a
114
  actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combination of all needs assessment experts."}
115
 
116
 
117
- from huggingface_hub import InferenceApi
118
 
119
- api = InferenceApi(repo_id="sentence-transformers/all-MiniLM-L6-v2", token=HF_key)
120
  response = api(inputs="test sentence")
121
 
122
  print("API response:", response)
@@ -618,7 +618,7 @@ def get_chat_response(prompt):
618
  completion = chain.invoke({"question": prompt})
619
 
620
  # Extract only the relevant chatbot response (not full structure)
621
- return completion['answer']
622
 
623
 
624
 
@@ -649,16 +649,20 @@ def submit_message(prompt, prompt_template, temperature, max_tokens, context_len
649
  completion = { "content": completion }
650
 
651
  print("Prompt/question:", prompt)
652
- answer = completion['content']['answer']
 
 
653
  print("Answer:", answer)
654
  print("Embeddings utlized:")
655
-
656
- for document in completion['content']['source_documents']:
 
657
  page_content = document.page_content # Use dot notation to access an attribute
658
  print("Embedding_content:", page_content)
659
  metadata = document.metadata # Use dot notation to access an attribute
660
  print("Metadata:", metadata)
661
- similarity_score = document.state['query_similarity_score']
 
662
  print("Similarity_score:", similarity_score)
663
  print("")
664
 
 
114
  actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combination of all needs assessment experts."}
115
 
116
 
117
+ from huggingface_hub import InferenceClient
118
 
119
+ api = InferenceClient(repo_id="sentence-transformers/all-MiniLM-L6-v2", token=HF_key)
120
  response = api(inputs="test sentence")
121
 
122
  print("API response:", response)
 
618
  completion = chain.invoke({"question": prompt})
619
 
620
  # Extract only the relevant chatbot response (not full structure)
621
+ return completion
622
 
623
 
624
 
 
649
  completion = { "content": completion }
650
 
651
  print("Prompt/question:", prompt)
652
+ #answer = completion['content']['answer']
653
+ answer = completion.get('answer', '')
654
+
655
  print("Answer:", answer)
656
  print("Embeddings utlized:")
657
+ source_documents = completion.get('source_documents', [])
658
+ #for document in completion['content']['source_documents']:
659
+ for document in source_documents:
660
  page_content = document.page_content # Use dot notation to access an attribute
661
  print("Embedding_content:", page_content)
662
  metadata = document.metadata # Use dot notation to access an attribute
663
  print("Metadata:", metadata)
664
+ similarity_score = document.state.get('query_similarity_score', 0)
665
+ #similarity_score = document.state['query_similarity_score']
666
  print("Similarity_score:", similarity_score)
667
  print("")
668