Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -468,16 +468,48 @@ answer_prompt.invoke(
|
|
468 |
)
|
469 |
|
470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
chain = ConversationalRetrievalChain.from_llm(
|
472 |
condense_question_prompt=standalone_question_prompt,
|
473 |
combine_docs_chain_kwargs={'prompt': answer_prompt},
|
474 |
condense_question_llm=instantiate_LLM(
|
475 |
-
LLM_provider="Google",api_key=
|
476 |
model_name="gemini-pro"),
|
477 |
memory=create_memory("gemini-pro"),
|
478 |
-
retriever =
|
479 |
llm=instantiate_LLM(
|
480 |
-
LLM_provider="Google",api_key=
|
481 |
model_name="gemini-pro"),
|
482 |
chain_type= "stuff",
|
483 |
verbose= False,
|
|
|
468 |
)
|
469 |
|
470 |
|
471 |
+
|
472 |
+
|
473 |
+
# Instantiate the retriever and the ConversationalRetrievalChain :
|
474 |
+
|
475 |
+
retriever_Google = retrieval_blocks(
|
476 |
+
create_vectorstore=False,
|
477 |
+
LLM_service="Google",
|
478 |
+
vectorstore_name="Vit_All_Google_Embeddings",
|
479 |
+
retriever_type="Cohere_reranker",
|
480 |
+
base_retriever_search_type="similarity", base_retriever_k=12,
|
481 |
+
compression_retriever_k=16,
|
482 |
+
cohere_api_key=cohere_api_key,cohere_top_n=10,
|
483 |
+
)
|
484 |
+
|
485 |
+
"""
|
486 |
+
chain_gemini,memory_gemini = custom_ConversationalRetrievalChain(
|
487 |
+
llm = instantiate_LLM(
|
488 |
+
LLM_provider="Google",api_key=google_api_key,temperature=0.5,model_name="gemini-pro"
|
489 |
+
),
|
490 |
+
condense_question_llm = instantiate_LLM(
|
491 |
+
LLM_provider="Google",api_key=google_api_key,temperature=0.1,model_name="gemini-pro"),
|
492 |
+
retriever=retriever_Google,
|
493 |
+
language="english",
|
494 |
+
llm_provider="Google",
|
495 |
+
model_name="gemini-pro"
|
496 |
+
)
|
497 |
+
|
498 |
+
|
499 |
+
memory_gemini.clear()
|
500 |
+
"""
|
501 |
+
|
502 |
+
|
503 |
chain = ConversationalRetrievalChain.from_llm(
|
504 |
condense_question_prompt=standalone_question_prompt,
|
505 |
combine_docs_chain_kwargs={'prompt': answer_prompt},
|
506 |
condense_question_llm=instantiate_LLM(
|
507 |
+
LLM_provider="Google",api_key=google_api_key,temperature=0.1,
|
508 |
model_name="gemini-pro"),
|
509 |
memory=create_memory("gemini-pro"),
|
510 |
+
retriever = retriever_Google, #base_retriever_HF
|
511 |
llm=instantiate_LLM(
|
512 |
+
LLM_provider="Google",api_key=google_api_key,temperature=0.5,
|
513 |
model_name="gemini-pro"),
|
514 |
chain_type= "stuff",
|
515 |
verbose= False,
|