Blue_Tigers / app.py
rynmurdock's picture
lfs and sync with blue-tigers github
9435075
raw
history blame
22.5 kB
# TODO unify/merge origin and this
# TODO save & restart from (if it exists) dataframe parquet
import torch
# lol
DEVICE = 'cuda'
STEPS = 6
output_hidden_state = False
device = "cuda"
dtype = torch.bfloat16
N_IMG_EMBS = 3
import logging
import os
import imageio
import gradio as gr
import numpy as np
from sklearn.svm import SVC
from sklearn import preprocessing
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
import random
import time
from PIL import Image
from safety_checker_improved import maybe_nsfw
torch.set_grad_enabled(False)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
prevs_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate', 'from_user_id', 'text', 'gemb'])
import spaces
start_time = time.time()
####################### Setup Model
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, LCMScheduler, AutoencoderTiny, UNet2DConditionModel, AutoencoderKL
from transformers import CLIPTextModel
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
from transformers import CLIPVisionModelWithProjection
import uuid
import av
import torchvision
def write_video(file_name, images, fps=17):
container = av.open(file_name, mode="w")
stream = container.add_stream("h264", rate=fps)
# stream.options = {'preset': 'faster'}
stream.thread_count = 1
stream.width = 512
stream.height = 512
stream.pix_fmt = "yuv420p"
for img in images:
img = np.array(img)
img = np.round(img).astype(np.uint8)
frame = av.VideoFrame.from_ndarray(img, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
# Flush stream
for packet in stream.encode():
container.mux(packet)
# Close the file
container.close()
def imio_write_video(file_name, images, fps=15):
writer = imageio.get_writer(file_name, fps=fps)
for im in images:
writer.append_data(np.array(im))
writer.close()
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="sdxl_models/image_encoder", torch_dtype=dtype,
device_map='cuda')
#vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=dtype)
# vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype)
# vae = compile_unet(vae, config=config)
#finetune_path = '''/home/ryn_mote/Misc/finetune-sd1.5/dreambooth-model best'''''
#unet = UNet2DConditionModel.from_pretrained(finetune_path+'/unet/').to(dtype)
#text_encoder = CLIPTextModel.from_pretrained(finetune_path+'/text_encoder/').to(dtype)
unet = UNet2DConditionModel.from_pretrained('rynmurdock/Sea_Claws', subfolder='unet',).to(dtype).to('cpu')
text_encoder = CLIPTextModel.from_pretrained('rynmurdock/Sea_Claws', subfolder='text_encoder',
device_map='cpu').to(dtype)
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
pipe = AnimateDiffPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", motion_adapter=adapter, image_encoder=image_encoder, torch_dtype=dtype,
unet=unet, text_encoder=text_encoder)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora",)
pipe.set_adapters(["lcm-lora"], [.95])
pipe.fuse_lora()
#pipe = AnimateDiffPipeline.from_pretrained('emilianJR/epiCRealism', torch_dtype=dtype, image_encoder=image_encoder)
#pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_4step_diffusers.safetensors"
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15_vit-G.bin", map_location='cpu')
# This IP adapter improves outputs substantially.
pipe.set_ip_adapter_scale(.6)
pipe.unet.fuse_qkv_projections()
#pipe.enable_free_init(method="gaussian", use_fast_sampling=True)
pipe.to(device=DEVICE)
#pipe.unet = torch.compile(pipe.unet)
#pipe.vae = torch.compile(pipe.vae)
#############################################################
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
pali = PaliGemmaForConditionalGeneration.from_pretrained('google/paligemma-3b-pt-224', torch_dtype=dtype, quantization_config=quantization_config).eval()
processor = AutoProcessor.from_pretrained('google/paligemma-3b-pt-224')
#pali = torch.compile(pali)
@spaces.GPU()
def to_wanted_embs(image_outputs, input_ids, attention_mask, cache_position=None):
inputs_embeds = pali.get_input_embeddings()(input_ids)
selected_image_feature = image_outputs.to(dtype).to(device)
image_features = pali.multi_modal_projector(selected_image_feature)
if cache_position is None:
cache_position = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device)
inputs_embeds, attention_mask, labels, position_ids = pali._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, None, None, cache_position
)
return inputs_embeds
# TODO cache descriptions?
@spaces.GPU()
def generate_pali(n_embs):
prompt = 'caption en'
model_inputs = processor(text=prompt, images=torch.zeros(1, 3, 224, 224), return_tensors="pt")
# we need to get im_embs taken in here.
descs = ''
for n, emb in enumerate(n_embs):
if n < len(n_embs)-1:
input_len = model_inputs["input_ids"].shape[-1]
input_embeds = to_wanted_embs(emb,
model_inputs["input_ids"].to(device),
model_inputs["attention_mask"].to(device))
generation = pali.generate(max_new_tokens=20, do_sample=True, top_p=.94, temperature=1.2, inputs_embeds=input_embeds)
decoded = processor.decode(generation[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
descs += f'Description: {decoded}\n'
else:
prompt = f'en {descs} Describe a new image that is similar.'
print(prompt)
model_inputs = processor(text=prompt, images=torch.zeros(1, 3, 224, 224), return_tensors="pt")
input_len = model_inputs["input_ids"].shape[-1]
input_embeds = to_wanted_embs(emb,
model_inputs["input_ids"].to(device),
model_inputs["attention_mask"].to(device))
generation = pali.generate(max_new_tokens=20, do_sample=True, top_p=.94, temperature=1.2, inputs_embeds=input_embeds)
decoded = processor.decode(generation[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return decoded
#############################################################
@spaces.GPU()
def generate_gpu(in_im_embs, prompt='the scene'):
with torch.no_grad():
in_im_embs = in_im_embs.to('cuda').unsqueeze(0).unsqueeze(0)
output = pipe(prompt=prompt, guidance_scale=1, added_cond_kwargs={}, ip_adapter_image_embeds=[in_im_embs], num_inference_steps=STEPS)
im_emb, _ = pipe.encode_image(
output.frames[0][len(output.frames[0])//2], 'cuda', 1, output_hidden_state
)
im_emb = im_emb.detach().to('cpu').to(torch.float32)
im = torchvision.transforms.ToTensor()(output.frames[0][len(output.frames[0])//2]).unsqueeze(0)
im = torch.nn.functional.interpolate(im, (224, 224))
im = (im - .5) * 2
gemb = pali.vision_tower(im.to(device).to(dtype)).last_hidden_state.detach().to('cpu').to(torch.float32)
return output, im_emb, gemb
def generate(in_im_embs, prompt='the scene'):
output, im_emb, gemb = generate_gpu(in_im_embs, prompt)
nsfw =maybe_nsfw(output.frames[0][len(output.frames[0])//2])
print(prompt)
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
if nsfw:
gr.Warning("NSFW content detected.")
# TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring.
return None, im_emb, gemb
output.frames[0] = output.frames[0] + list(reversed(output.frames[0]))
write_video(path, output.frames[0])
return path, im_emb, gemb
#######################
def get_user_emb(embs, ys):
# handle case where every instance of calibration videos is 'Neither' or 'Like' or 'Dislike'
if len(list(ys)) <= 10:
aways = [torch.zeros_like(embs[0]) for i in range(10)]
embs += aways
awal = [0 for i in range(5)] + [1 for i in range(5)]
ys += awal
indices = list(range(len(embs)))
# sample only as many negatives as there are positives
pos_indices = [i for i in indices if ys[i] == 1]
neg_indices = [i for i in indices if ys[i] == 0]
#lower = min(len(pos_indices), len(neg_indices))
#neg_indices = random.sample(neg_indices, lower)
#pos_indices = random.sample(pos_indices, lower)
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
# this ends up adding a rating but losing an embedding, it seems.
# let's take off a rating if so to continue without indexing errors.
if len(ys) > len(embs):
print('ys are longer than embs; popping latest rating')
ys.pop(-1)
feature_embs = torch.stack([embs[i].squeeze().to('cpu') for i in indices]).to('cpu')
#scaler = preprocessing.StandardScaler().fit(feature_embs)
#feature_embs = scaler.transform(feature_embs)
chosen_y = np.array([ys[i] for i in indices])
if feature_embs.norm() != 0:
feature_embs = feature_embs / feature_embs.norm()
#lin_class = Ridge(fit_intercept=False).fit(feature_embs, chosen_y)
#class_weight='balanced'
lin_class = SVC(max_iter=500, kernel='linear', C=.1, ).fit(feature_embs.squeeze(), chosen_y)
coef_ = torch.tensor(lin_class.coef_, dtype=torch.float32).detach().to('cpu')
coef_ = coef_ / coef_.abs().max()
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * coef_.to(dtype=dtype)
return im_emb
def pluck_img(user_id, user_emb):
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]]
while len(not_rated_rows) == 0:
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]]
time.sleep(.001)
# TODO optimize this lol
best_sim = -100000
for i in not_rated_rows.iterrows():
# TODO sloppy .to but it is 3am.
sim = torch.cosine_similarity(i[1]['embeddings'].detach().to('cpu'), user_emb.detach().to('cpu'))
if sim > best_sim:
best_sim = sim
best_row = i[1]
img = best_row['paths']
text = best_row.get('text', '')
return img, text
def background_next_image():
global prevs_df
# only let it get N (maybe 3) ahead of the user
#not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
while len(rated_rows) < 5:
# not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
time.sleep(.01)
user_id_list = set(rated_rows['latest_user_to_rate'].to_list())
for uid in user_id_list:
rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is not None for i in prevs_df.iterrows()]]
not_rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is None for i in prevs_df.iterrows()]]
# we need to intersect not_rated_rows from this user's embed > 7. Just add a new column on which user_id spawned the
# media.
unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == uid for i in not_rated_rows.iterrows()]]
rated_from_user = rated_rows[[i[1]['from_user_id'] == uid for i in rated_rows.iterrows()]]
# we pop previous ratings if there are > n
if len(rated_from_user) >= 25:
oldest = rated_from_user.iloc[0]['paths']
prevs_df = prevs_df[prevs_df['paths'] != oldest]
# we don't compute more after n are in the queue for them
if len(unrated_from_user) >= 20:
continue
embs, ys, gembs = pluck_embs_ys(uid)
user_emb = get_user_emb(embs, ys) * 3
pos_gembs = [g for g, y in zip(gembs, ys) if y == 1]
if len(pos_gembs) > 4:
hist_gem = random.sample(pos_gembs, N_IMG_EMBS) # rng n embeddings
text = generate_pali(hist_gem)
else:
text = 'the scene'
img, embs, new_gem = generate(user_emb, text)
if img:
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate', 'text', 'gemb'])
tmp_df['paths'] = [img]
tmp_df['embeddings'] = [embs]
tmp_df['user:rating'] = [{' ': ' '}]
tmp_df['from_user_id'] = [uid]
tmp_df['text'] = [text]
tmp_df['gemb'] = [new_gem]
prevs_df = pd.concat((prevs_df, tmp_df))
# we can free up storage by deleting the image
if len(prevs_df) > 500:
oldest_path = prevs_df.iloc[6]['paths']
if os.path.isfile(oldest_path):
os.remove(oldest_path)
else:
# If it fails, inform the user.
print("Error: %s file not found" % oldest_path)
# only keep 50 images & embeddings & ips, then remove oldest besides calibrating
prevs_df = pd.concat((prevs_df.iloc[:6], prevs_df.iloc[7:]))
def pluck_embs_ys(user_id):
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
#not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
#while len(not_rated_rows) == 0:
# not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) == None for i in prevs_df.iterrows()]]
# rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) != None for i in prevs_df.iterrows()]]
# time.sleep(.01)
# print('current user has 0 not_rated_rows')
embs = rated_rows['embeddings'].to_list()
ys = [i[user_id] for i in rated_rows['user:rating'].to_list()]
gembs = rated_rows['gemb'].to_list()
return embs, ys, gembs
def next_image(calibrate_prompts, user_id):
with torch.no_grad():
if len(calibrate_prompts) > 0:
cal_video = calibrate_prompts.pop(0)
image = prevs_df[prevs_df['paths'] == cal_video]['paths'].to_list()[0]
return image, calibrate_prompts, ''
else:
embs, ys, gembs = pluck_embs_ys(user_id)
user_emb = get_user_emb(embs, ys) * 3
image, text = pluck_img(user_id, user_emb)
return image, calibrate_prompts, text
def start(_, calibrate_prompts, user_id, request: gr.Request):
user_id = int(str(time.time())[-7:].replace('.', ''))
image, calibrate_prompts, text = next_image(calibrate_prompts, user_id)
return [
gr.Button(value='Like (L)', interactive=True),
gr.Button(value='Neither (Space)', interactive=True, visible=False),
gr.Button(value='Dislike (A)', interactive=True),
gr.Button(value='Start', interactive=False),
image,
calibrate_prompts,
user_id
]
def choose(img, choice, calibrate_prompts, user_id, request: gr.Request):
global prevs_df
if choice == 'Like (L)':
choice = 1
elif choice == 'Neither (Space)':
img, calibrate_prompts, text = next_image(calibrate_prompts, user_id)
return img, calibrate_prompts, text
else:
choice = 0
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
# TODO skip allowing rating & just continue
if img == None:
print('NSFW -- choice is disliked')
choice = 0
print(prevs_df['paths'].to_list(), img)
row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()]
# if it's still in the dataframe, add the choice
if len(prevs_df.loc[row_mask, 'user:rating']) > 0:
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id]
img, calibrate_prompts, text = next_image(calibrate_prompts, user_id)
return img, calibrate_prompts, text
css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
0% {
background: var(--bg-color);
}
100% {
background: var(--button-secondary-background-fill);
}
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
if (event.key === 'a' || event.key === 'A') {
// Trigger click on 'dislike' if 'A' is pressed
document.getElementById('dislike').click();
} else if (event.key === ' ' || event.keyCode === 32) {
// Trigger click on 'neither' if Spacebar is pressed
document.getElementById('neither').click();
} else if (event.key === 'l' || event.key === 'L') {
// Trigger click on 'like' if 'L' is pressed
document.getElementById('like').click();
}
});
function fadeInOut(button, color) {
button.style.setProperty('--bg-color', color);
button.classList.remove('fade-in-out');
void button.offsetWidth; // This line forces a repaint by accessing a DOM property
button.classList.add('fade-in-out');
button.addEventListener('animationend', () => {
button.classList.remove('fade-in-out'); // Reset the animation state
}, {once: true});
}
document.body.addEventListener('click', function(event) {
const target = event.target;
if (target.id === 'dislike') {
fadeInOut(target, '#ff1717');
} else if (target.id === 'like') {
fadeInOut(target, '#006500');
} else if (target.id === 'neither') {
fadeInOut(target, '#cccccc');
}
});
</script>
'''
with gr.Blocks(css=css, head=js_head) as demo:
gr.Markdown('''# Blue Tigers
### Generative Recommenders for Exporation of Video
Explore the latent space without text prompts based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
''', elem_id="description")
user_id = gr.State()
# calibration videos -- this is a misnomer now :D
calibrate_prompts = gr.State([
'./first.mp4',
'./second.mp4',
'./third.mp4',
'./fourth.mp4',
'./fifth.mp4',
'./sixth.mp4',
])
def l():
return None
with gr.Row(elem_id='output-image'):
img = gr.Video(
label='Lightning',
autoplay=True,
interactive=False,
height=512,
width=512,
#include_audio=False,
elem_id="video_output"
)
img.play(l, js='''document.querySelector('[data-testid="Lightning-player"]').loop = true''')
with gr.Row():
text = gr.Textbox(interactive=False, visible=True, label='Text')
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither", visible=False)
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
b1.click(
choose,
[img, b1, calibrate_prompts, user_id],
[img, calibrate_prompts, text],
)
b2.click(
choose,
[img, b2, calibrate_prompts, user_id],
[img, calibrate_prompts, text],
)
b3.click(
choose,
[img, b3, calibrate_prompts, user_id],
[img, calibrate_prompts, text],
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, calibrate_prompts, user_id],
[b1, b2, b3, b4, img, calibrate_prompts, user_id]
)
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several videos and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the AnimateLCM model with NSFW filtering is unlikely to produce NSFW images, this may still occur, and users should avoid NSFW content when rating.
</ div>
<br><br>
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
</ div>''')
# TODO quiet logging
log = logging.getLogger('log_here')
log.setLevel(logging.ERROR)
scheduler = BackgroundScheduler()
scheduler.add_job(func=background_next_image, trigger="interval", seconds=.5)
scheduler.start()
# prep our calibration videos
for im in [
'./first.mp4',
'./second.mp4',
'./third.mp4',
'./fourth.mp4',
'./fifth.mp4',
'./sixth.mp4',
'./seventh.mp4',
'./eigth.mp4',
'./ninth.mp4',
'./tenth.mp4',
]:
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'text', 'gemb'])
tmp_df['paths'] = [im]
image = list(imageio.imiter(im))
image = image[len(image)//2]
tmp_df['embeddings'] = [torch.load(im.replace('mp4', 'im_.pt'))]
tmp_df['gemb'] = [torch.load(im.replace('mp4', 'gemb_.pt'))]
tmp_df['user:rating'] = [{' ': ' '}]
prevs_df = pd.concat((prevs_df, tmp_df))
demo.launch(share=True, server_port=8443)