rynmurdock commited on
Commit
2395d0a
1 Parent(s): 4414403

seems generate may be blocking? unclear

Browse files
__pycache__/safety_checker_improved.cpython-310.pyc ADDED
Binary file (1.38 kB). View file
 
app.py CHANGED
@@ -25,7 +25,9 @@ from sklearn.svm import SVC
25
  from sklearn.inspection import permutation_importance
26
  from sklearn import preprocessing
27
  import pandas as pd
28
- from apscheduler.schedulers.background import BackgroundScheduler
 
 
29
 
30
  import random
31
  import time
@@ -223,57 +225,58 @@ def pluck_img(user_id, user_emb):
223
 
224
  def background_next_image():
225
  global prevs_df
226
-
227
- # only let it get N (maybe 3) ahead of the user
228
- #not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
229
- rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
230
- while len(rated_rows) < 4:
231
- # not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
232
- rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
233
- time.sleep(.01)
234
- print('all users have 4 or less rows rated')
235
-
236
- user_id_list = set(rated_rows['latest_user_to_rate'].to_list())
237
- for uid in user_id_list:
238
- rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is not None for i in prevs_df.iterrows()]]
239
- not_rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is None for i in prevs_df.iterrows()]]
240
-
241
- # we need to intersect not_rated_rows from this user's embed > 7. Just add a new column on which user_id spawned the
242
- # media.
243
-
244
- from_user = prevs_df[[i[1]['from_user_id'] == uid for i in prevs_df.iterrows()]]
245
- if len(from_user) >= 10:
246
- oldest = from_user.iloc[-1]['paths']
247
- print(f'User has {len(from_user)} rows. Popping oldest: {oldest}')
248
- prevs_df = prevs_df[prevs_df['paths'] != oldest]
249
-
250
- if len(rated_rows) < 4:
251
- print(f'latest user {uid} has < 4 rows') # or > 7 unrated rows')
252
- continue
253
-
254
- print(uid)
255
- embs, ys = pluck_embs_ys(uid)
256
 
257
- user_emb = get_user_emb(embs, ys)
258
- img, embs = generate(user_emb)
259
- print(img)
260
- if img:
261
- tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate'])
262
- tmp_df['paths'] = [img]
263
- tmp_df['embeddings'] = [embs]
264
- tmp_df['user:rating'] = [{' ': ' '}]
265
- tmp_df['from_user_id'] = [uid]
266
- prevs_df = pd.concat((prevs_df, tmp_df))
267
- # we can free up storage by deleting the image
268
- if len(prevs_df) > 50:
269
- oldest_path = prevs_df.iloc[6]['paths']
270
- if os.path.isfile(oldest_path):
271
- os.remove(oldest_path)
272
- else:
273
- # If it fails, inform the user.
274
- print("Error: %s file not found" % oldest_path)
275
- # only keep 50 images & embeddings & ips, then remove oldest besides calibrating
276
- prevs_df = pd.concat((prevs_df.iloc[:6], prevs_df.iloc[7:]))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277
 
278
 
279
  def pluck_embs_ys(user_id):
@@ -475,9 +478,12 @@ Explore the latent space without text prompts based on your preferences. Learn m
475
  log = logging.getLogger('log_here')
476
  log.setLevel(logging.ERROR)
477
 
478
- scheduler = BackgroundScheduler()
479
- scheduler.add_job(func=background_next_image, trigger="interval", seconds=.1)
480
- scheduler.start()
 
 
 
481
 
482
  def encode_space(x):
483
  im_emb, _ = pipe.encode_image(
 
25
  from sklearn.inspection import permutation_importance
26
  from sklearn import preprocessing
27
  import pandas as pd
28
+ #from apscheduler.schedulers.background import BackgroundScheduler
29
+ import sched
30
+ import threading
31
 
32
  import random
33
  import time
 
225
 
226
  def background_next_image():
227
  global prevs_df
228
+ while True:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229
 
230
+ # only let it get N (maybe 3) ahead of the user
231
+ #not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
232
+ rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
233
+ while len(rated_rows) < 4:
234
+ # not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]]
235
+ rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]]
236
+ time.sleep(.01)
237
+ print('all users have 4 or less rows rated')
238
+
239
+ user_id_list = set(rated_rows['latest_user_to_rate'].to_list())
240
+ for uid in user_id_list:
241
+ rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is not None for i in prevs_df.iterrows()]]
242
+ not_rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is None for i in prevs_df.iterrows()]]
243
+
244
+ # we need to intersect not_rated_rows from this user's embed > 7. Just add a new column on which user_id spawned the
245
+ # media.
246
+
247
+ from_user = prevs_df[[i[1]['from_user_id'] == uid for i in prevs_df.iterrows()]]
248
+ if len(from_user) >= 10:
249
+ oldest = from_user.iloc[-1]['paths']
250
+ print(f'User has {len(from_user)} rows. Popping oldest: {oldest}')
251
+ prevs_df = prevs_df[prevs_df['paths'] != oldest]
252
+
253
+ if len(rated_rows) < 4:
254
+ print(f'latest user {uid} has < 4 rows') # or > 7 unrated rows')
255
+ continue
256
+
257
+ print(uid)
258
+ embs, ys = pluck_embs_ys(uid)
259
+
260
+ user_emb = get_user_emb(embs, ys)
261
+ img, embs = generate(user_emb)
262
+ print(img)
263
+ if img:
264
+ tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate'])
265
+ tmp_df['paths'] = [img]
266
+ tmp_df['embeddings'] = [embs]
267
+ tmp_df['user:rating'] = [{' ': ' '}]
268
+ tmp_df['from_user_id'] = [uid]
269
+ prevs_df = pd.concat((prevs_df, tmp_df))
270
+ # we can free up storage by deleting the image
271
+ if len(prevs_df) > 50:
272
+ oldest_path = prevs_df.iloc[6]['paths']
273
+ if os.path.isfile(oldest_path):
274
+ os.remove(oldest_path)
275
+ else:
276
+ # If it fails, inform the user.
277
+ print("Error: %s file not found" % oldest_path)
278
+ # only keep 50 images & embeddings & ips, then remove oldest besides calibrating
279
+ prevs_df = pd.concat((prevs_df.iloc[:6], prevs_df.iloc[7:]))
280
 
281
 
282
  def pluck_embs_ys(user_id):
 
478
  log = logging.getLogger('log_here')
479
  log.setLevel(logging.ERROR)
480
 
481
+ #scheduler = BackgroundScheduler()
482
+ #scheduler.add_job(func=background_next_image, trigger="interval", seconds=.1)
483
+ #scheduler.start()
484
+
485
+ thread = threading.Thread(target=background_next_image,)
486
+ thread.start()
487
 
488
  def encode_space(x):
489
  im_emb, _ = pipe.encode_image(