Spaces:
Running
on
A10G
Running
on
A10G
File size: 15,127 Bytes
6f68207 f360117 05e29c3 447c576 05e29c3 f360117 05e29c3 93f11bd a22a221 f360117 6f68207 db551d5 5c43323 f360117 447c576 05e29c3 447c576 db551d5 385fb5f 6f68207 385fb5f 6f68207 05e29c3 6f68207 db551d5 05e29c3 385fb5f 0186388 05e29c3 59f9d35 b41bb43 05e29c3 6f68207 db551d5 b1772c8 447c576 0186388 05e29c3 0186388 05e29c3 0186388 05e29c3 0186388 05e29c3 0186388 05e29c3 447c576 178e606 447c576 385fb5f 6f68207 385fb5f 6f68207 385fb5f 6f68207 05e29c3 6f68207 05e29c3 447c576 385fb5f 447c576 5c43323 385fb5f 0186388 f2cdd37 0186388 f2cdd37 0186388 f2cdd37 0186388 f2cdd37 0186388 447c576 e35bd8b 0186388 f360117 c9cc7c2 2990438 225ad9c 0186388 2990438 f360117 447c576 0186388 f360117 0186388 f360117 7ac7da9 0186388 32bd2b2 0186388 f360117 0186388 5c43323 0186388 f360117 0186388 f360117 db551d5 f360117 04f075c 6c62bb5 0186388 6c62bb5 7dcdfac f360117 5c43323 b1772c8 f360117 b1772c8 f360117 19701ae 0186388 f360117 5c43323 f360117 0186388 f360117 db551d5 1146833 db551d5 ecec1ba db551d5 ecec1ba db551d5 ecec1ba db551d5 ecec1ba 6ef75ad bfd5a13 db551d5 00de940 0186388 00de940 7dcdfac 0186388 7dcdfac f360117 0186388 f360117 db551d5 f360117 5c43323 0186388 f360117 5c43323 0186388 f360117 5c43323 0186388 f360117 eeadab2 f360117 0186388 a57acc8 c7b36a6 f360117 0186388 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
DEVICE = 'cuda'
import gradio as gr
import numpy as np
from sklearn.svm import LinearSVC
from sklearn import preprocessing
import pandas as pd
from diffusers import LCMScheduler, AutoencoderTiny, EulerDiscreteScheduler, UNet2DConditionModel, AutoPipelineForText2Image, DiffusionPipeline
from diffusers.models import ImageProjection
import torch
torch.set_float32_matmul_precision('high')
import random
import time
# TODO put back
import spaces
from urllib.request import urlopen
from PIL import Image
import requests
from io import BytesIO, StringIO
from transformers import CLIPVisionModelWithProjection
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from safety_checker_improved import maybe_nsfw
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
start_time = time.time()
####################### Setup Model
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
sdxl_lightening = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_2step_unet.safetensors"
unet = UNet2DConditionModel.from_config(model_id, subfolder="unet").to(DEVICE, torch.float16)
unet.load_state_dict(load_file(hf_hub_download(sdxl_lightening, ckpt), device=DEVICE))
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=torch.float16,).to(DEVICE)
pipe = AutoPipelineForText2Image.from_pretrained(model_id, unet=unet, torch_dtype=torch.float16, variant="fp16", image_encoder=image_encoder).to(DEVICE)
pipe.unet._load_ip_adapter_weights(torch.load(hf_hub_download('h94/IP-Adapter', 'sdxl_models/ip-adapter_sdxl_vit-h.bin')))
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl_vit-h.bin")
pipe.register_modules(image_encoder = image_encoder)
pipe.set_ip_adapter_scale(0.8)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.to(device=DEVICE)
# TODO put back
@spaces.GPU
def compile_em():
pipe.unet = torch.compile(pipe.unet)
pipe.vae = torch.compile(pipe.vae, mode='reduce-overhead')
autoencoder.model.forward = torch.compile(autoencoder.model.forward, backend='inductor', dynamic=True)
output_hidden_state = False
#######################
####################### Setup autoencoder
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM
class BottleneckT5Autoencoder:
def __init__(self, model_path: str, device='cuda'):
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512, torch_dtype=torch.bfloat16)
self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(self.device)
self.model.eval()
def embed(self, text: str) -> torch.FloatTensor:
inputs = self.tokenizer(text, return_tensors='pt', padding=True).to(self.device)
decoder_inputs = self.tokenizer('', return_tensors='pt').to(self.device)
return self.model(
**inputs,
decoder_input_ids=decoder_inputs['input_ids'],
encode_only=True,
)
def generate_from_latent(self, latent: torch.FloatTensor, max_length=512, temperature=1., top_p=.8, min_new_tokens=30) -> str:
dummy_text = '.'
dummy = self.embed(dummy_text)
perturb_vector = latent - dummy
self.model.perturb_vector = perturb_vector
input_ids = self.tokenizer(dummy_text, return_tensors='pt').to(self.device).input_ids
output = self.model.generate(
input_ids=input_ids,
max_length=max_length,
do_sample=True,
temperature=temperature,
top_p=top_p,
num_return_sequences=1,
min_new_tokens=min_new_tokens,
# num_beams=8,
)
return self.tokenizer.decode(output[0], skip_special_tokens=True)
autoencoder = BottleneckT5Autoencoder(model_path='thesephist/contra-bottleneck-t5-xl-wikipedia')
compile_em()
#######################
# TODO put back
@spaces.GPU
def generate(prompt, in_embs=None,):
if prompt != '':
print(prompt)
in_embs = in_embs / in_embs.abs().max() * .15 if in_embs != None else None
in_embs = .9 * in_embs.to('cuda') + .5 * autoencoder.embed(prompt).to('cuda') if in_embs != None else autoencoder.embed(prompt).to('cuda')
else:
print('From embeds.')
in_embs = in_embs / in_embs.abs().max() * .15
text = autoencoder.generate_from_latent(in_embs.to('cuda').to(dtype=torch.bfloat16), temperature=.8, top_p=.94, min_new_tokens=5)
return text, in_embs.to('cpu')
# TODO put back
@spaces.GPU
def predict(
prompt,
im_emb=None,
progress=gr.Progress(track_tqdm=True)
):
"""Run a single prediction on the model"""
with torch.no_grad():
if im_emb == None:
im_emb = torch.zeros(1, 1024, dtype=torch.float16, device=DEVICE)
im_emb = [im_emb.to(DEVICE).unsqueeze(0)]
if prompt == '':
image = pipe(
prompt_embeds=torch.zeros(1, 1, 2048, dtype=torch.float16, device=DEVICE),
pooled_prompt_embeds=torch.zeros(1, 1280, dtype=torch.float16, device=DEVICE),
ip_adapter_image_embeds=im_emb,
height=1024,
width=1024,
num_inference_steps=2,
guidance_scale=0,
# timesteps=[800],
).images[0]
else:
image = pipe(
prompt=prompt,
ip_adapter_image_embeds=im_emb,
height=1024,
width=1024,
num_inference_steps=2,
guidance_scale=0,
# timesteps=[800],
).images[0]
im_emb, _ = pipe.encode_image(
image, DEVICE, 1, output_hidden_state
)
nsfw = maybe_nsfw(image)
if nsfw:
return None, im_emb.to('cpu')
return image, im_emb.to('cpu')
# sample a .8 of rated embeddings for some stochasticity, or at least two embeddings.
def get_coeff(embs_local, ys):
n_to_choose = max(int(len(embs_local)*.8), 2)
indices = random.sample(range(len(embs_local)), n_to_choose)
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
# this ends up adding a rating but losing an embedding, it seems.
# let's take off a rating if so to continue without indexing errors.
if len(ys) > len(embs_local):
print('ys are longer than embs; popping latest rating')
ys.pop(-1)
# also add the latest 0 and the latest 1
has_0 = False
has_1 = False
for i in reversed(range(len(ys))):
if ys[i] == 0 and has_0 == False:
indices.append(i)
has_0 = True
elif ys[i] == 1 and has_1 == False:
indices.append(i)
has_1 = True
if has_0 and has_1:
break
feature_embs = np.array(torch.cat([embs_local[i].to('cpu') for i in indices]).to('cpu'))
scaler = preprocessing.StandardScaler().fit(feature_embs)
feature_embs = scaler.transform(feature_embs)
print(len(feature_embs), len(ys))
lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(feature_embs, np.array([ys[i] for i in indices]))
lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
return lin_class.coef_
# TODO add to state instead of shared across all
glob_idx = 0
def next_image(embs, img_embs, ys, calibrate_prompts):
global glob_idx
glob_idx = glob_idx + 1
if glob_idx >= 12:
glob_idx = 0
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
if len(calibrate_prompts) == 0 and len(list(set(ys))) <= 1:
embs.append(.01*torch.randn(1, 2048))
embs.append(.01*torch.randn(1, 2048))
img_embs.append(.01*torch.randn(1, 1024))
img_embs.append(.01*torch.randn(1, 1024))
ys.append(0)
ys.append(1)
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample prompts #########')
prompt = calibrate_prompts.pop(0)
print(prompt)
image, img_emb = predict(prompt)
im_emb = autoencoder.embed(prompt)
embs.append(im_emb)
img_embs.append(img_emb)
return image, embs, img_embs, ys, calibrate_prompts
else:
print('######### Roaming #########')
im_s = get_coeff(embs, ys)
rng_prompt = random.choice(prompt_list)
w = 1.4# if len(embs) % 2 == 0 else 0
prompt= '' if not glob_idx % 3 == 0 else rng_prompt
prompt, _ = generate(prompt, in_embs=im_s)
print(prompt)
im_emb = autoencoder.embed(prompt)
embs.append(im_emb)
learn_emb = get_coeff(img_embs, ys)
img_emb = w * learn_emb.to(dtype=torch.float16)
image, img_emb = predict(prompt, im_emb=img_emb)
img_embs.append(img_emb)
if len(embs) > 100:
embs.pop(0)
img_embs.pop(0)
ys.pop(0)
return image, embs, img_embs, ys, calibrate_prompts
def start(_, embs, img_embs, ys, calibrate_prompts):
image, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
return [
gr.Button(value='Like (L)', interactive=True),
gr.Button(value='Neither (Space)', interactive=True),
gr.Button(value='Dislike (A)', interactive=True),
gr.Button(value='Start', interactive=False),
image,
embs,
img_embs,
ys,
calibrate_prompts
]
def choose(img, choice, embs, img_embs, ys, calibrate_prompts):
if choice == 'Like (L)':
choice = 1
elif choice == 'Neither (Space)':
_ = embs.pop(-1)
_ = img_embs.pop(-1)
img, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
return img, embs, img_embs, ys, calibrate_prompts
else:
choice = 0
print(img, 'img')
if img is None:
print('NSFW -- choice is disliked')
choice = 0
ys.append(choice)
img, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
return img, embs, img_embs, ys, calibrate_prompts
css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
0% {
background: var(--bg-color);
}
100% {
background: var(--button-secondary-background-fill);
}
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
if (event.key === 'a' || event.key === 'A') {
// Trigger click on 'dislike' if 'A' is pressed
document.getElementById('dislike').click();
} else if (event.key === ' ' || event.keyCode === 32) {
// Trigger click on 'neither' if Spacebar is pressed
document.getElementById('neither').click();
} else if (event.key === 'l' || event.key === 'L') {
// Trigger click on 'like' if 'L' is pressed
document.getElementById('like').click();
}
});
function fadeInOut(button, color) {
button.style.setProperty('--bg-color', color);
button.classList.remove('fade-in-out');
void button.offsetWidth; // This line forces a repaint by accessing a DOM property
button.classList.add('fade-in-out');
button.addEventListener('animationend', () => {
button.classList.remove('fade-in-out'); // Reset the animation state
}, {once: true});
}
document.body.addEventListener('click', function(event) {
const target = event.target;
if (target.id === 'dislike') {
fadeInOut(target, '#ff1717');
} else if (target.id === 'like') {
fadeInOut(target, '#006500');
} else if (target.id === 'neither') {
fadeInOut(target, '#cccccc');
}
});
</script>
'''
with gr.Blocks(css=css, head=js_head) as demo:
gr.Markdown('''### Zahir: Generative Recommenders for Unprompted, Scalable Exploration
Explore the latent space without prompting based on your feedback. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
''', elem_id="description")
embs = gr.State([])
img_embs = gr.State([])
ys = gr.State([])
calibrate_prompts = gr.State([
'the moon is melting into my glass of tea',
'a sea slug -- pair of claws scuttling -- jelly fish glowing',
'an adorable creature. It may be a goblin or a pig or a slug.',
'an animation about a gorgeous nebula',
'a sketch of an impressive mountain by da vinci',
'a watercolor painting: the octopus writhes',
])
with gr.Row(elem_id='output-image'):
img = gr.Image(interactive=False, elem_id='output-image', width=700)
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
b1.click(
choose,
[img, b1, embs, img_embs, ys, calibrate_prompts],
[img, embs, img_embs, ys, calibrate_prompts]
)
b2.click(
choose,
[img, b2, embs, img_embs, ys, calibrate_prompts],
[img, embs, img_embs, ys, calibrate_prompts]
)
b3.click(
choose,
[img, b3, embs, img_embs, ys, calibrate_prompts],
[img, embs, img_embs, ys, calibrate_prompts]
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, embs, img_embs, ys, calibrate_prompts],
[b1, b2, b3, b4, img, embs, img_embs, ys, calibrate_prompts])
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the SDXL model is unlikely to produce NSFW images, it still may be possible, and users should avoid NSFW content when rating.
</ div>''')
demo.launch(share=True) # Share your demo with just 1 extra parameter 🚀
|