rynmurdock's picture
Update app.py
2bc76ca verified
raw
history blame
6.94 kB
DEVICE = 'cpu'
import gradio as gr
import numpy as np
from sklearn.svm import LinearSVC
from sklearn import preprocessing
import pandas as pd
from diffusers import LCMScheduler
from diffusers.models import ImageProjection
from patch_sdxl import SDEmb
import torch
import spaces
import random
import time
import torch
from urllib.request import urlopen
from PIL import Image
import requests
from io import BytesIO, StringIO
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
start_time = time.time()
####################### Setup Model
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
pipe = SDEmb.from_pretrained(model_id, variant="fp16", low_cpu_mem_usage=True, device_map="auto")
pipe.load_lora_weights(lcm_lora_id)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device='cuda', dtype=torch.float16)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
output_hidden_state = False
#######################
@spaces.GPU
def predict(
prompt,
im_emb=None,
):
"""Run a single prediction on the model"""
with torch.no_grad():
if im_emb == None:
im_emb = torch.zeros(1, 1280, dtype=torch.float16, device='cuda')
else:
im_emb = torch.tensor([float(i) for i in im_emb.split(', ')]).unsqueeze(0).to(dtype=torch.float16).to('cuda')
image = pipe(
prompt=prompt,
ip_adapter_emb=im_emb,
height=1024,
width=1024,
num_inference_steps=8,
guidance_scale=0,
).images[0]
im_emb, _ = pipe.encode_image(
image, 'cuda', 1, output_hidden_state
)
return image, im_emb.to(DEVICE)
# TODO add to state instead of shared across all
glob_idx = 0
def next_image(embs, ys, calibrate_prompts):
global glob_idx
glob_idx = glob_idx + 1
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
if len(calibrate_prompts) == 0 and len(list(set(ys))) <= 1:
embs.append(.01*torch.randn(1, 1280))
embs.append(.01*torch.randn(1, 1280))
ys.append(0)
ys.append(1)
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample prompts #########')
prompt = calibrate_prompts.pop(0)
print(prompt)
image, img_emb = predict(prompt)
embs.append(img_emb)
return image, embs, ys, calibrate_prompts
else:
print('######### Roaming #########')
# sample only as many negatives as there are positives
indices = range(len(ys))
pos_indices = [i for i in indices if ys[i] == 1]
neg_indices = [i for i in indices if ys[i] == 0]
lower = min(len(pos_indices), len(neg_indices))
neg_indices = random.sample(neg_indices, lower)
pos_indices = random.sample(pos_indices, lower)
cut_embs = [embs[i] for i in neg_indices] + [embs[i] for i in pos_indices]
cut_ys = [ys[i] for i in neg_indices] + [ys[i] for i in pos_indices]
feature_embs = torch.stack([e[0].detach().cpu() for e in cut_embs])
scaler = preprocessing.StandardScaler().fit(feature_embs)
feature_embs = scaler.transform(feature_embs)
print(np.array(feature_embs).shape, np.array(ys).shape)
lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(np.array(feature_embs), np.array(cut_ys))
lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
rng_prompt = random.choice(prompt_list)
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * lin_class.coef_.to(device=DEVICE, dtype=torch.float16)
prompt= 'an image' if glob_idx % 2 == 0 else rng_prompt
print(prompt)
image, im_emb = predict(prompt, im_emb)
embs.append(im_emb)
return image, embs, ys, calibrate_prompts
def start(_, embs, ys, calibrate_prompts):
image, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return [
gr.Button(value='Like', interactive=True),
gr.Button(value='Neither', interactive=True),
gr.Button(value='Dislike', interactive=True),
gr.Button(value='Start', interactive=False),
image,
embs,
ys,
calibrate_prompts
]
def choose(choice, embs, ys, calibrate_prompts):
if choice == 'Like':
choice = 1
elif choice == 'Neither':
_ = embs.pop(-1)
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return img, embs, ys, calibrate_prompts
else:
choice = 0
ys.append(choice)
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return img, embs, ys, calibrate_prompts
css = "div#output-image {height: 768px !important; width: 768px !important; margin:auto;}"
with gr.Blocks(css=css) as demo:
embs = gr.State([])
ys = gr.State([])
calibrate_prompts = gr.State([
"4k photo",
'surrealist art',
# 'a psychedelic, fractal view',
'a beautiful collage',
'abstract art',
'an eldritch image',
'a sketch',
# 'a city full of darkness and graffiti',
'',
])
with gr.Row(elem_id='output-image'):
img = gr.Image(interactive=False, elem_id='output-image',)
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike', interactive=False,)
b2 = gr.Button(value='Neither', interactive=False,)
b1 = gr.Button(value='Like', interactive=False,)
b1.click(
choose,
[b1, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
b2.click(
choose,
[b2, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
b3.click(
choose,
[b3, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, embs, ys, calibrate_prompts],
[b1, b2, b3, b4, img, embs, ys, calibrate_prompts])
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:32'>You will calibrate for several prompts and then roam.</ div>''')
demo.launch() # Share your demo with just 1 extra parameter πŸš€