rynmurdock's picture
Update app.py
5663ecc verified
raw
history blame
5.96 kB
DEVICE = 'cpu'
import gradio as gr
import numpy as np
from sklearn.svm import LinearSVC
from sklearn import preprocessing
import pandas as pd
import random
import time
import replicate
import torch
from urllib.request import urlopen
from PIL import Image
import requests
from io import BytesIO, StringIO
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
start_time = time.time()
# TODO add to state instead of shared across all
glob_idx = 0
def next_image(embs, ys, calibrate_prompts):
global glob_idx
glob_idx = glob_idx + 1
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample prompts #########')
prompt = calibrate_prompts.pop(0)
print(prompt)
output = replicate.run(
"rynmurdock/zahir:42c58addd49ab57f1e309f0b9a0f271f483bbef0470758757c623648fe989e42",
input={"prompt": prompt,}
)
response = requests.get(output['file1'])
image = Image.open(BytesIO(response.content))
embs.append(torch.tensor([float(i) for i in urlopen(output['file2']).read().decode('utf-8').split(', ')]).unsqueeze(0))
return image, embs, ys, calibrate_prompts
else:
print('######### Roaming #########')
# sample only as many negatives as there are positives
indices = range(len(ys))
pos_indices = [i for i in indices if ys[i] == 1]
neg_indices = [i for i in indices if ys[i] == 0]
lower = min(len(pos_indices), len(neg_indices))
neg_indices = random.sample(neg_indices, lower)
pos_indices = random.sample(pos_indices, lower)
cut_embs = [embs[i] for i in neg_indices] + [embs[i] for i in pos_indices]
cut_ys = [ys[i] for i in neg_indices] + [ys[i] for i in pos_indices]
feature_embs = torch.stack([e[0].detach().cpu() for e in cut_embs])
scaler = preprocessing.StandardScaler().fit(feature_embs)
feature_embs = scaler.transform(feature_embs)
print(np.array(feature_embs).shape, np.array(ys).shape)
lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(np.array(feature_embs), np.array(cut_ys))
lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
rng_prompt = random.choice(prompt_list)
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * lin_class.coef_.to(device=DEVICE, dtype=torch.float16)
prompt= 'an image' if glob_idx % 2 == 0 else rng_prompt
print(prompt)
im_emb_st = str(im_emb[0].cpu().detach().tolist())[1:-1]
output = replicate.run(
"rynmurdock/zahir:42c58addd49ab57f1e309f0b9a0f271f483bbef0470758757c623648fe989e42",
input={"prompt": prompt, 'im_emb': im_emb_st}
)
response = requests.get(output['file1'])
image = Image.open(BytesIO(response.content))
im_emb = torch.tensor([float(i) for i in urlopen(output['file2']).read().decode('utf-8').split(', ')]).unsqueeze(0)
embs.append(im_emb)
torch.save(lin_class.coef_, f'./{start_time}.pt')
return image, embs, ys, calibrate_prompts
def start(_, embs, ys, calibrate_prompts):
image, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return [
gr.Button(value='Like', interactive=True),
gr.Button(value='Neither', interactive=True),
gr.Button(value='Dislike', interactive=True),
gr.Button(value='Start', interactive=False),
image,
embs,
ys,
calibrate_prompts
]
def choose(choice, embs, ys, calibrate_prompts):
if choice == 'Like':
choice = 1
elif choice == 'Neither':
_ = embs.pop(-1)
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
else:
choice = 0
ys.append(choice)
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return img, embs, ys, calibrate_prompts
css = "div#output-image {height: 768px !important; width: 768px !important; margin:auto;}"
with gr.Blocks(css=css) as demo:
embs = gr.State([])
ys = gr.State([])
calibrate_prompts = gr.State([
"4k photo",
'surrealist art',
# 'a psychedelic, fractal view',
'a beautiful collage',
'abstract art',
'an eldritch image',
'a sketch',
# 'a city full of darkness and graffiti',
'',
])
with gr.Row(elem_id='output-image'):
img = gr.Image(interactive=False, elem_id='output-image',)
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike', interactive=False,)
b2 = gr.Button(value='Neither', interactive=False,)
b1 = gr.Button(value='Like', interactive=False,)
b1.click(
choose,
[b1, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
b2.click(
choose,
[b2, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
b3.click(
choose,
[b3, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, embs, ys, calibrate_prompts],
[b1, b2, b3, b4, img, embs, ys, calibrate_prompts])
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:32'>You will callibrate for several prompts and then roam.</ div>''')
demo.launch() # Share your demo with just 1 extra parameter πŸš€