rynmurdock commited on
Commit
0186388
1 Parent(s): 8b9775e

text & image, faster

Browse files
Files changed (2) hide show
  1. app.py +158 -67
  2. patch_sdxl.py +0 -559
app.py CHANGED
@@ -1,5 +1,9 @@
1
  DEVICE = 'cuda'
2
 
 
 
 
 
3
  import gradio as gr
4
  import numpy as np
5
  from sklearn.svm import LinearSVC
@@ -23,7 +27,7 @@ from io import BytesIO, StringIO
23
  from transformers import CLIPVisionModelWithProjection
24
  from huggingface_hub import hf_hub_download
25
  from safetensors.torch import load_file
26
- import spaces
27
 
28
  prompt_list = [p for p in list(set(
29
  pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
@@ -46,12 +50,81 @@ pipe.register_modules(image_encoder = image_encoder)
46
  pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
47
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
48
  pipe.to(device=DEVICE)
 
 
 
 
 
 
 
 
 
 
49
 
50
 
51
  output_hidden_state = False
52
  #######################
53
 
54
- @spaces.GPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  def predict(
56
  prompt,
57
  im_emb=None,
@@ -86,11 +159,47 @@ def predict(
86
  image, DEVICE, 1, output_hidden_state
87
  )
88
  return image, im_emb.to('cpu')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  # TODO add to state instead of shared across all
91
  glob_idx = 0
92
 
93
- def next_image(embs, ys, calibrate_prompts):
94
  global glob_idx
95
  glob_idx = glob_idx + 1
96
  if glob_idx >= 12:
@@ -100,6 +209,8 @@ def next_image(embs, ys, calibrate_prompts):
100
  if len(calibrate_prompts) == 0 and len(list(set(ys))) <= 1:
101
  embs.append(.01*torch.randn(1, 1024))
102
  embs.append(.01*torch.randn(1, 1024))
 
 
103
  ys.append(0)
104
  ys.append(1)
105
 
@@ -109,53 +220,34 @@ def next_image(embs, ys, calibrate_prompts):
109
  prompt = calibrate_prompts.pop(0)
110
  print(prompt)
111
  image, img_emb = predict(prompt)
112
- embs.append(img_emb)
113
- return image, embs, ys, calibrate_prompts
 
 
114
  else:
115
  print('######### Roaming #########')
116
- # sample a .8 of rated embeddings for some stochasticity, or at least two embeddings.
117
- n_to_choose = max(int(len(embs)*.8), 2)
118
- indices = random.sample(range(len(embs)), n_to_choose)
119
-
120
- # we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
121
- # this ends up adding a rating but losing an embedding, it seems.
122
- # let's take off a rating if so to continue without indexing errors.
123
- if len(ys) > len(embs):
124
- print('ys are longer than embs; popping latest rating')
125
- ys.pop(-1)
126
-
127
- # also add the latest 0 and the latest 1
128
- has_0 = False
129
- has_1 = False
130
- for i in reversed(range(len(ys))):
131
- if ys[i] == 0 and has_0 == False:
132
- indices.append(i)
133
- has_0 = True
134
- elif ys[i] == 1 and has_1 == False:
135
- indices.append(i)
136
- has_1 = True
137
- if has_0 and has_1:
138
- break
139
-
140
- feature_embs = np.array(torch.cat([embs[i].to('cpu') for i in indices]).to('cpu'))
141
- scaler = preprocessing.StandardScaler().fit(feature_embs)
142
- feature_embs = scaler.transform(feature_embs)
143
-
144
- lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(feature_embs, np.array([ys[i] for i in indices]))
145
- lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
146
- lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
147
 
 
148
  rng_prompt = random.choice(prompt_list)
149
  w = 1.4# if len(embs) % 2 == 0 else 0
150
- im_emb = w * lin_class.coef_.to(dtype=torch.float16)
151
- prompt= 'an image' if glob_idx % 2 == 0 else rng_prompt
152
- print(prompt, len(ys))
153
- image, im_emb = predict(prompt, im_emb)
 
 
154
  embs.append(im_emb)
 
 
 
 
 
 
 
155
  if len(embs) > 20:
156
  embs.pop(0)
157
  ys.pop(0)
158
- return image, embs, ys, calibrate_prompts
159
 
160
 
161
 
@@ -165,8 +257,8 @@ def next_image(embs, ys, calibrate_prompts):
165
 
166
 
167
 
168
- def start(_, embs, ys, calibrate_prompts):
169
- image, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
170
  return [
171
  gr.Button(value='Like (L)', interactive=True),
172
  gr.Button(value='Neither (Space)', interactive=True),
@@ -174,23 +266,24 @@ def start(_, embs, ys, calibrate_prompts):
174
  gr.Button(value='Start', interactive=False),
175
  image,
176
  embs,
 
177
  ys,
178
  calibrate_prompts
179
  ]
180
 
181
 
182
- def choose(choice, embs, ys, calibrate_prompts):
183
  if choice == 'Like (L)':
184
  choice = 1
185
  elif choice == 'Neither (Space)':
186
  _ = embs.pop(-1)
187
- img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
188
- return img, embs, ys, calibrate_prompts
189
  else:
190
  choice = 0
191
  ys.append(choice)
192
- img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
193
- return img, embs, ys, calibrate_prompts
194
 
195
  css = '''.gradio-container{max-width: 700px !important}
196
  #description{text-align: center}
@@ -248,48 +341,46 @@ with gr.Blocks(css=css, head=js_head) as demo:
248
  Explore the latent space without text prompts, based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
249
  ''', elem_id="description")
250
  embs = gr.State([])
 
251
  ys = gr.State([])
252
  calibrate_prompts = gr.State([
253
- "4k photo",
254
- 'surrealist art',
255
- # 'a psychedelic, fractal view',
256
- 'a beautiful collage',
257
- 'abstract art',
258
- 'an eldritch image',
259
- 'a sketch',
260
- # 'a city full of darkness and graffiti',
261
- '',
262
  ])
263
 
264
  with gr.Row(elem_id='output-image'):
265
- img = gr.Image(interactive=False, elem_id='output-image',width=700)
266
  with gr.Row(equal_height=True):
267
  b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
268
  b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
269
  b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
270
  b1.click(
271
  choose,
272
- [b1, embs, ys, calibrate_prompts],
273
- [img, embs, ys, calibrate_prompts]
274
  )
275
  b2.click(
276
  choose,
277
- [b2, embs, ys, calibrate_prompts],
278
- [img, embs, ys, calibrate_prompts]
279
  )
280
  b3.click(
281
  choose,
282
- [b3, embs, ys, calibrate_prompts],
283
- [img, embs, ys, calibrate_prompts]
284
  )
285
  with gr.Row():
286
  b4 = gr.Button(value='Start')
287
  b4.click(start,
288
- [b4, embs, ys, calibrate_prompts],
289
- [b1, b2, b3, b4, img, embs, ys, calibrate_prompts])
290
  with gr.Row():
291
  html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br>
292
  <div style='text-align:center; font-size:14px'>Note that while the SDXL model is unlikely to produce NSFW images, it still may be possible, and users should avoid NSFW content when rating.
293
  </ div>''')
294
 
295
- demo.launch() # Share your demo with just 1 extra parameter 🚀
 
1
  DEVICE = 'cuda'
2
 
3
+ from sfast.compilers.diffusion_pipeline_compiler import (compile,
4
+ CompilationConfig)
5
+ config = CompilationConfig.Default()
6
+
7
  import gradio as gr
8
  import numpy as np
9
  from sklearn.svm import LinearSVC
 
27
  from transformers import CLIPVisionModelWithProjection
28
  from huggingface_hub import hf_hub_download
29
  from safetensors.torch import load_file
30
+ #import spaces
31
 
32
  prompt_list = [p for p in list(set(
33
  pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
 
50
  pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
51
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
52
  pipe.to(device=DEVICE)
53
+ pipe = compile(pipe, config=config)
54
+
55
+ image = pipe(prompt_embeds=torch.zeros(1, 1, 2048, dtype=torch.float16, device=DEVICE),
56
+ pooled_prompt_embeds=torch.zeros(1, 1280, dtype=torch.float16, device=DEVICE),
57
+ ip_adapter_image_embeds=[torch.zeros(1, 1, 1024, dtype=torch.float16, device=DEVICE)],
58
+ height=1024,
59
+ width=1024,
60
+ num_inference_steps=2,
61
+ guidance_scale=0,
62
+ ).images[0]
63
 
64
 
65
  output_hidden_state = False
66
  #######################
67
 
68
+ ####################### Setup autoencoder
69
+
70
+ from tqdm import tqdm
71
+ from transformers import AutoTokenizer, AutoModelForCausalLM
72
+
73
+ class BottleneckT5Autoencoder:
74
+ def __init__(self, model_path: str, device='cuda'):
75
+ self.device = device
76
+ self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512, torch_dtype=torch.bfloat16)
77
+ self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(self.device)
78
+ self.model.eval()
79
+ # self.model = torch.compile(self.model)
80
+
81
+
82
+ def embed(self, text: str) -> torch.FloatTensor:
83
+ inputs = self.tokenizer(text, return_tensors='pt', padding=True).to(self.device)
84
+ decoder_inputs = self.tokenizer('', return_tensors='pt').to(self.device)
85
+ return self.model(
86
+ **inputs,
87
+ decoder_input_ids=decoder_inputs['input_ids'],
88
+ encode_only=True,
89
+ )
90
+
91
+ def generate_from_latent(self, latent: torch.FloatTensor, max_length=512, temperature=1., top_p=.8, length_penalty=10, min_new_tokens=30) -> str:
92
+ dummy_text = '.'
93
+ dummy = self.embed(dummy_text)
94
+ perturb_vector = latent - dummy
95
+ self.model.perturb_vector = perturb_vector
96
+ input_ids = self.tokenizer(dummy_text, return_tensors='pt').to(self.device).input_ids
97
+ output = self.model.generate(
98
+ input_ids=input_ids,
99
+ max_length=max_length,
100
+ do_sample=True,
101
+ temperature=temperature,
102
+ top_p=top_p,
103
+ num_return_sequences=1,
104
+ length_penalty=length_penalty,
105
+ min_new_tokens=min_new_tokens,
106
+ # num_beams=8,
107
+ )
108
+ return self.tokenizer.decode(output[0], skip_special_tokens=True)
109
+
110
+ autoencoder = BottleneckT5Autoencoder(model_path='thesephist/contra-bottleneck-t5-xl-wikipedia')
111
+
112
+ #######################
113
+
114
+ def generate(prompt, in_embs=None,):
115
+ if prompt != '':
116
+ print(prompt)
117
+ in_embs = in_embs / in_embs.abs().max() * .15 if in_embs != None else None
118
+ in_embs = .9 * in_embs.to('cuda') + .5 * autoencoder.embed(prompt).to('cuda') if in_embs != None else autoencoder.embed(prompt).to('cuda')
119
+ else:
120
+ print('From embeds.')
121
+ in_embs = in_embs / in_embs.abs().max() * .15
122
+ text = autoencoder.generate_from_latent(in_embs.to('cuda').to(dtype=torch.bfloat16), temperature=.3, top_p=.99, min_new_tokens=5)
123
+ return text, in_embs.to('cpu')
124
+
125
+
126
+
127
+ #@spaces.GPU
128
  def predict(
129
  prompt,
130
  im_emb=None,
 
159
  image, DEVICE, 1, output_hidden_state
160
  )
161
  return image, im_emb.to('cpu')
162
+
163
+
164
+ # sample a .8 of rated embeddings for some stochasticity, or at least two embeddings.
165
+ def get_coeff(embs, ys):
166
+ n_to_choose = max(int(len(embs)*.8), 2)
167
+ indices = random.sample(range(len(embs)), n_to_choose)
168
+
169
+ # we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
170
+ # this ends up adding a rating but losing an embedding, it seems.
171
+ # let's take off a rating if so to continue without indexing errors.
172
+ if len(ys) > len(embs):
173
+ print('ys are longer than embs; popping latest rating')
174
+ ys.pop(-1)
175
+
176
+ # also add the latest 0 and the latest 1
177
+ has_0 = False
178
+ has_1 = False
179
+ for i in reversed(range(len(ys))):
180
+ if ys[i] == 0 and has_0 == False:
181
+ indices.append(i)
182
+ has_0 = True
183
+ elif ys[i] == 1 and has_1 == False:
184
+ indices.append(i)
185
+ has_1 = True
186
+ if has_0 and has_1:
187
+ break
188
+
189
+ feature_embs = np.array(torch.cat([embs[i].to('cpu') for i in indices]).to('cpu'))
190
+ scaler = preprocessing.StandardScaler().fit(feature_embs)
191
+ feature_embs = scaler.transform(feature_embs)
192
+
193
+ lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(feature_embs, np.array([ys[i] for i in indices]))
194
+ lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
195
+ lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
196
+
197
+ return lin_class.coef_
198
 
199
  # TODO add to state instead of shared across all
200
  glob_idx = 0
201
 
202
+ def next_image(embs, img_embs, ys, calibrate_prompts):
203
  global glob_idx
204
  glob_idx = glob_idx + 1
205
  if glob_idx >= 12:
 
209
  if len(calibrate_prompts) == 0 and len(list(set(ys))) <= 1:
210
  embs.append(.01*torch.randn(1, 1024))
211
  embs.append(.01*torch.randn(1, 1024))
212
+ img_embs.append(.01*torch.randn(1, 1024))
213
+ img_embs.append(.01*torch.randn(1, 1024))
214
  ys.append(0)
215
  ys.append(1)
216
 
 
220
  prompt = calibrate_prompts.pop(0)
221
  print(prompt)
222
  image, img_emb = predict(prompt)
223
+ im_emb = autoencoder.embed(prompt)
224
+ embs.append(im_emb)
225
+ img_embs.append(img_emb)
226
+ return image, embs, img_embs, ys, calibrate_prompts
227
  else:
228
  print('######### Roaming #########')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229
 
230
+ im_s = get_coeff(embs, ys)
231
  rng_prompt = random.choice(prompt_list)
232
  w = 1.4# if len(embs) % 2 == 0 else 0
233
+
234
+ prompt= '' if glob_idx % 2 == 0 else rng_prompt
235
+
236
+ prompt, _ = generate(prompt, in_embs=im_s)
237
+ print(prompt)
238
+ im_emb = autoencoder.embed(prompt)
239
  embs.append(im_emb)
240
+
241
+ learn_emb = get_coeff(img_embs, ys)
242
+
243
+ img_emb = w * learn_emb.to(dtype=torch.float16)
244
+ image, img_emb = predict(prompt, im_emb=img_emb)
245
+ img_embs.append(img_emb)
246
+
247
  if len(embs) > 20:
248
  embs.pop(0)
249
  ys.pop(0)
250
+ return image, embs, img_embs, ys, calibrate_prompts
251
 
252
 
253
 
 
257
 
258
 
259
 
260
+ def start(_, embs, img_embs, ys, calibrate_prompts):
261
+ image, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
262
  return [
263
  gr.Button(value='Like (L)', interactive=True),
264
  gr.Button(value='Neither (Space)', interactive=True),
 
266
  gr.Button(value='Start', interactive=False),
267
  image,
268
  embs,
269
+ img_embs,
270
  ys,
271
  calibrate_prompts
272
  ]
273
 
274
 
275
+ def choose(choice, embs, img_embs, ys, calibrate_prompts):
276
  if choice == 'Like (L)':
277
  choice = 1
278
  elif choice == 'Neither (Space)':
279
  _ = embs.pop(-1)
280
+ img, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
281
+ return img, embs, img_embs, ys, calibrate_prompts
282
  else:
283
  choice = 0
284
  ys.append(choice)
285
+ img, embs, img_embs, ys, calibrate_prompts = next_image(embs, img_embs, ys, calibrate_prompts)
286
+ return img, embs, img_embs, ys, calibrate_prompts
287
 
288
  css = '''.gradio-container{max-width: 700px !important}
289
  #description{text-align: center}
 
341
  Explore the latent space without text prompts, based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
342
  ''', elem_id="description")
343
  embs = gr.State([])
344
+ img_embs = gr.State([])
345
  ys = gr.State([])
346
  calibrate_prompts = gr.State([
347
+ 'the moon is melting into my glass of tea',
348
+ 'a sea slug -- pair of claws scuttling -- jelly fish glowing',
349
+ 'an adorable creature. It may be a goblin or a pig or a slug.',
350
+ 'an animation about a gorgeous nebula',
351
+ 'a sketch of an impressive mountain by da vinci',
352
+ 'a watercolor painting: the octopus writhes',
 
 
 
353
  ])
354
 
355
  with gr.Row(elem_id='output-image'):
356
+ img = gr.Image(interactive=False, elem_id='output-image', width=700)
357
  with gr.Row(equal_height=True):
358
  b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
359
  b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
360
  b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
361
  b1.click(
362
  choose,
363
+ [b1, embs, img_embs, ys, calibrate_prompts],
364
+ [img, embs, img_embs, ys, calibrate_prompts]
365
  )
366
  b2.click(
367
  choose,
368
+ [b2, embs, img_embs, ys, calibrate_prompts],
369
+ [img, embs, img_embs, ys, calibrate_prompts]
370
  )
371
  b3.click(
372
  choose,
373
+ [b3, embs, img_embs, ys, calibrate_prompts],
374
+ [img, embs, img_embs, ys, calibrate_prompts]
375
  )
376
  with gr.Row():
377
  b4 = gr.Button(value='Start')
378
  b4.click(start,
379
+ [b4, embs, img_embs, ys, calibrate_prompts],
380
+ [b1, b2, b3, b4, img, embs, img_embs, ys, calibrate_prompts])
381
  with gr.Row():
382
  html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br>
383
  <div style='text-align:center; font-size:14px'>Note that while the SDXL model is unlikely to produce NSFW images, it still may be possible, and users should avoid NSFW content when rating.
384
  </ div>''')
385
 
386
+ demo.launch(share=True) # Share your demo with just 1 extra parameter 🚀
patch_sdxl.py DELETED
@@ -1,559 +0,0 @@
1
- import inspect
2
- from typing import Any, Callable, Dict, List, Optional, Union, Tuple
3
-
4
- from diffusers import StableDiffusionXLPipeline
5
-
6
- import torch
7
- from packaging import version
8
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
9
-
10
- from diffusers.configuration_utils import FrozenDict
11
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
12
- from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
13
- from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
14
- from diffusers.models.attention_processor import FusedAttnProcessor2_0
15
- from diffusers.models.lora import adjust_lora_scale_text_encoder
16
- from diffusers.schedulers import KarrasDiffusionSchedulers
17
- from diffusers.utils import (
18
- USE_PEFT_BACKEND,
19
- deprecate,
20
- logging,
21
- replace_example_docstring,
22
- scale_lora_layers,
23
- unscale_lora_layers,
24
- )
25
- from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
26
-
27
-
28
-
29
- from transformers import CLIPFeatureExtractor
30
- import numpy as np
31
- import torch
32
- from PIL import Image
33
- from typing import Optional, Tuple, Union
34
-
35
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
36
- torch_device = device
37
- torch_dtype = torch.float16
38
-
39
-
40
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
41
-
42
- EXAMPLE_DOC_STRING = """
43
- Examples:
44
- ```py
45
- >>> import torch
46
- >>> from diffusers import StableDiffusionPipeline
47
-
48
- >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
49
- >>> pipe = pipe.to("cuda")
50
-
51
- >>> prompt = "a photo of an astronaut riding a horse on mars"
52
- >>> image = pipe(prompt).images[0]
53
- ```
54
- """
55
-
56
-
57
- def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
58
- """
59
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
60
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
61
- """
62
- std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
63
- std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
64
- # rescale the results from guidance (fixes overexposure)
65
- noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
66
- # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
67
- noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
68
- return noise_cfg
69
-
70
-
71
- def retrieve_timesteps(
72
- scheduler,
73
- num_inference_steps: Optional[int] = None,
74
- device: Optional[Union[str, torch.device]] = None,
75
- timesteps: Optional[List[int]] = None,
76
- **kwargs,
77
- ):
78
- """
79
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
80
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
81
-
82
- Args:
83
- scheduler (`SchedulerMixin`):
84
- The scheduler to get timesteps from.
85
- num_inference_steps (`int`):
86
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
87
- `timesteps` must be `None`.
88
- device (`str` or `torch.device`, *optional*):
89
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
90
- timesteps (`List[int]`, *optional*):
91
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
92
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
93
- must be `None`.
94
-
95
- Returns:
96
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
97
- second element is the number of inference steps.
98
- """
99
- if timesteps is not None:
100
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
101
- if not accepts_timesteps:
102
- raise ValueError(
103
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
104
- f" timestep schedules. Please check whether you are using the correct scheduler."
105
- )
106
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
107
- timesteps = scheduler.timesteps
108
- num_inference_steps = len(timesteps)
109
- else:
110
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
111
- timesteps = scheduler.timesteps
112
- return timesteps, num_inference_steps
113
-
114
-
115
- class SDEmb(StableDiffusionXLPipeline):
116
- @torch.no_grad()
117
- @replace_example_docstring(EXAMPLE_DOC_STRING)
118
- def __call__(
119
- self,
120
- prompt: Union[str, List[str]] = None,
121
- prompt_2: Optional[Union[str, List[str]]] = None,
122
- height: Optional[int] = None,
123
- width: Optional[int] = None,
124
- num_inference_steps: int = 50,
125
- timesteps: List[int] = None,
126
- denoising_end: Optional[float] = None,
127
- guidance_scale: float = 5.0,
128
- negative_prompt: Optional[Union[str, List[str]]] = None,
129
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
130
- num_images_per_prompt: Optional[int] = 1,
131
- eta: float = 0.0,
132
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
133
- latents: Optional[torch.FloatTensor] = None,
134
- prompt_embeds: Optional[torch.FloatTensor] = None,
135
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
136
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
137
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
138
- ip_adapter_image: Optional[PipelineImageInput] = None,
139
- output_type: Optional[str] = "pil",
140
- return_dict: bool = True,
141
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
142
- guidance_rescale: float = 0.0,
143
- original_size: Optional[Tuple[int, int]] = None,
144
- crops_coords_top_left: Tuple[int, int] = (0, 0),
145
- target_size: Optional[Tuple[int, int]] = None,
146
- negative_original_size: Optional[Tuple[int, int]] = None,
147
- negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
148
- negative_target_size: Optional[Tuple[int, int]] = None,
149
- clip_skip: Optional[int] = None,
150
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
151
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
152
- ip_adapter_emb=None,
153
- **kwargs,
154
- ):
155
- r"""
156
- Function invoked when calling the pipeline for generation.
157
-
158
- Args:
159
- prompt (`str` or `List[str]`, *optional*):
160
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
161
- instead.
162
- prompt_2 (`str` or `List[str]`, *optional*):
163
- The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
164
- used in both text-encoders
165
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
166
- The height in pixels of the generated image. This is set to 1024 by default for the best results.
167
- Anything below 512 pixels won't work well for
168
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
169
- and checkpoints that are not specifically fine-tuned on low resolutions.
170
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
171
- The width in pixels of the generated image. This is set to 1024 by default for the best results.
172
- Anything below 512 pixels won't work well for
173
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
174
- and checkpoints that are not specifically fine-tuned on low resolutions.
175
- num_inference_steps (`int`, *optional*, defaults to 50):
176
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
177
- expense of slower inference.
178
- timesteps (`List[int]`, *optional*):
179
- Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
180
- in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
181
- passed will be used. Must be in descending order.
182
- denoising_end (`float`, *optional*):
183
- When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
184
- completed before it is intentionally prematurely terminated. As a result, the returned sample will
185
- still retain a substantial amount of noise as determined by the discrete timesteps selected by the
186
- scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
187
- "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
188
- Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
189
- guidance_scale (`float`, *optional*, defaults to 5.0):
190
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
191
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
192
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
193
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
194
- usually at the expense of lower image quality.
195
- negative_prompt (`str` or `List[str]`, *optional*):
196
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
197
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
198
- less than `1`).
199
- negative_prompt_2 (`str` or `List[str]`, *optional*):
200
- The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
201
- `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
202
- num_images_per_prompt (`int`, *optional*, defaults to 1):
203
- The number of images to generate per prompt.
204
- eta (`float`, *optional*, defaults to 0.0):
205
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
206
- [`schedulers.DDIMScheduler`], will be ignored for others.
207
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
208
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
209
- to make generation deterministic.
210
- latents (`torch.FloatTensor`, *optional*):
211
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
212
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
213
- tensor will ge generated by sampling using the supplied random `generator`.
214
- prompt_embeds (`torch.FloatTensor`, *optional*):
215
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
216
- provided, text embeddings will be generated from `prompt` input argument.
217
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
218
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
219
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
220
- argument.
221
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
222
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
223
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
224
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
225
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
226
- weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
227
- input argument.
228
- ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
229
- output_type (`str`, *optional*, defaults to `"pil"`):
230
- The output format of the generate image. Choose between
231
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
232
- return_dict (`bool`, *optional*, defaults to `True`):
233
- Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
234
- of a plain tuple.
235
- cross_attention_kwargs (`dict`, *optional*):
236
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
237
- `self.processor` in
238
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
239
- guidance_rescale (`float`, *optional*, defaults to 0.0):
240
- Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
241
- Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
242
- [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
243
- Guidance rescale factor should fix overexposure when using zero terminal SNR.
244
- original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
245
- If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
246
- `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
247
- explained in section 2.2 of
248
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
249
- crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
250
- `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
251
- `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
252
- `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
253
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
254
- target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
255
- For most cases, `target_size` should be set to the desired height and width of the generated image. If
256
- not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
257
- section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
258
- negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
259
- To negatively condition the generation process based on a specific image resolution. Part of SDXL's
260
- micro-conditioning as explained in section 2.2 of
261
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
262
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
263
- negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
264
- To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
265
- micro-conditioning as explained in section 2.2 of
266
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
267
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
268
- negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
269
- To negatively condition the generation process based on a target image resolution. It should be as same
270
- as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
271
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
272
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
273
- callback_on_step_end (`Callable`, *optional*):
274
- A function that calls at the end of each denoising steps during the inference. The function is called
275
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
276
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
277
- `callback_on_step_end_tensor_inputs`.
278
- callback_on_step_end_tensor_inputs (`List`, *optional*):
279
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
280
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
281
- `._callback_tensor_inputs` attribute of your pipeline class.
282
-
283
- Examples:
284
-
285
- Returns:
286
- [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
287
- [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
288
- `tuple`. When returning a tuple, the first element is a list with the generated images.
289
- """
290
-
291
- callback = kwargs.pop("callback", None)
292
- callback_steps = kwargs.pop("callback_steps", None)
293
-
294
- if callback is not None:
295
- deprecate(
296
- "callback",
297
- "1.0.0",
298
- "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
299
- )
300
- if callback_steps is not None:
301
- deprecate(
302
- "callback_steps",
303
- "1.0.0",
304
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
305
- )
306
-
307
- # 0. Default height and width to unet
308
- height = height or self.default_sample_size * self.vae_scale_factor
309
- width = width or self.default_sample_size * self.vae_scale_factor
310
-
311
- original_size = original_size or (height, width)
312
- target_size = target_size or (height, width)
313
-
314
- # 1. Check inputs. Raise error if not correct
315
- self.check_inputs(
316
- prompt,
317
- prompt_2,
318
- height,
319
- width,
320
- callback_steps,
321
- negative_prompt,
322
- negative_prompt_2,
323
- prompt_embeds,
324
- negative_prompt_embeds,
325
- pooled_prompt_embeds,
326
- negative_pooled_prompt_embeds,
327
- callback_on_step_end_tensor_inputs,
328
- )
329
-
330
- self._guidance_scale = guidance_scale
331
- self._guidance_rescale = guidance_rescale
332
- self._clip_skip = clip_skip
333
- self._cross_attention_kwargs = cross_attention_kwargs
334
- self._denoising_end = denoising_end
335
- self._interrupt = False
336
-
337
- # 2. Define call parameters
338
- if prompt is not None and isinstance(prompt, str):
339
- batch_size = 1
340
- elif prompt is not None and isinstance(prompt, list):
341
- batch_size = len(prompt)
342
- else:
343
- batch_size = prompt_embeds.shape[0]
344
-
345
- device = self._execution_device
346
-
347
- # 3. Encode input prompt
348
- lora_scale = (
349
- self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
350
- )
351
-
352
- (
353
- prompt_embeds,
354
- negative_prompt_embeds,
355
- pooled_prompt_embeds,
356
- negative_pooled_prompt_embeds,
357
- ) = self.encode_prompt(
358
- prompt=prompt,
359
- prompt_2=prompt_2,
360
- device=device,
361
- num_images_per_prompt=num_images_per_prompt,
362
- do_classifier_free_guidance=self.do_classifier_free_guidance,
363
- negative_prompt=negative_prompt,
364
- negative_prompt_2=negative_prompt_2,
365
- prompt_embeds=prompt_embeds,
366
- negative_prompt_embeds=negative_prompt_embeds,
367
- pooled_prompt_embeds=pooled_prompt_embeds,
368
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
369
- lora_scale=lora_scale,
370
- clip_skip=self.clip_skip,
371
- )
372
-
373
- # 4. Prepare timesteps
374
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
375
-
376
- # 5. Prepare latent variables
377
- num_channels_latents = self.unet.config.in_channels
378
- latents = self.prepare_latents(
379
- batch_size * num_images_per_prompt,
380
- num_channels_latents,
381
- height,
382
- width,
383
- prompt_embeds.dtype,
384
- device,
385
- generator,
386
- latents,
387
- )
388
-
389
- # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
390
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
391
-
392
- # 7. Prepare added time ids & embeddings
393
- add_text_embeds = pooled_prompt_embeds
394
- if self.text_encoder_2 is None:
395
- text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
396
- else:
397
- text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
398
-
399
- add_time_ids = self._get_add_time_ids(
400
- original_size,
401
- crops_coords_top_left,
402
- target_size,
403
- dtype=prompt_embeds.dtype,
404
- text_encoder_projection_dim=text_encoder_projection_dim,
405
- )
406
- if negative_original_size is not None and negative_target_size is not None:
407
- negative_add_time_ids = self._get_add_time_ids(
408
- negative_original_size,
409
- negative_crops_coords_top_left,
410
- negative_target_size,
411
- dtype=prompt_embeds.dtype,
412
- text_encoder_projection_dim=text_encoder_projection_dim,
413
- )
414
- else:
415
- negative_add_time_ids = add_time_ids
416
-
417
- if self.do_classifier_free_guidance:
418
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
419
- add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
420
- add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
421
-
422
- prompt_embeds = prompt_embeds.to(device)
423
- add_text_embeds = add_text_embeds.to(device)
424
- add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
425
-
426
- if ip_adapter_emb is not None:
427
- image_embeds = ip_adapter_emb
428
-
429
- elif ip_adapter_image is not None:
430
- output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
431
- image_embeds, negative_image_embeds = self.encode_image(
432
- ip_adapter_image, device, num_images_per_prompt, output_hidden_state
433
- )
434
- if self.do_classifier_free_guidance:
435
- image_embeds = torch.cat([negative_image_embeds, image_embeds])
436
-
437
- # 8. Denoising loop
438
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
439
-
440
- # 8.1 Apply denoising_end
441
- if (
442
- self.denoising_end is not None
443
- and isinstance(self.denoising_end, float)
444
- and self.denoising_end > 0
445
- and self.denoising_end < 1
446
- ):
447
- discrete_timestep_cutoff = int(
448
- round(
449
- self.scheduler.config.num_train_timesteps
450
- - (self.denoising_end * self.scheduler.config.num_train_timesteps)
451
- )
452
- )
453
- num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
454
- timesteps = timesteps[:num_inference_steps]
455
-
456
- # 9. Optionally get Guidance Scale Embedding
457
- timestep_cond = None
458
- if self.unet.config.time_cond_proj_dim is not None:
459
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
460
- timestep_cond = self.get_guidance_scale_embedding(
461
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
462
- ).to(device=device, dtype=latents.dtype)
463
-
464
- self._num_timesteps = len(timesteps)
465
- with self.progress_bar(total=num_inference_steps) as progress_bar:
466
- for i, t in enumerate(timesteps):
467
- if self.interrupt:
468
- continue
469
-
470
- # expand the latents if we are doing classifier free guidance
471
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
472
-
473
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
474
-
475
- # predict the noise residual
476
- added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
477
- if ip_adapter_image is not None or ip_adapter_emb is not None:
478
- added_cond_kwargs["image_embeds"] = image_embeds
479
- noise_pred = self.unet(
480
- latent_model_input,
481
- t,
482
- encoder_hidden_states=prompt_embeds,
483
- timestep_cond=timestep_cond,
484
- cross_attention_kwargs=self.cross_attention_kwargs,
485
- added_cond_kwargs=added_cond_kwargs,
486
- return_dict=False,
487
- )[0]
488
-
489
- # perform guidance
490
- if self.do_classifier_free_guidance:
491
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
492
- noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
493
-
494
- if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
495
- # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
496
- noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
497
-
498
- # compute the previous noisy sample x_t -> x_t-1
499
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
500
-
501
- if callback_on_step_end is not None:
502
- callback_kwargs = {}
503
- for k in callback_on_step_end_tensor_inputs:
504
- callback_kwargs[k] = locals()[k]
505
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
506
-
507
- latents = callback_outputs.pop("latents", latents)
508
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
509
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
510
- add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
511
- negative_pooled_prompt_embeds = callback_outputs.pop(
512
- "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
513
- )
514
- add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
515
- negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
516
-
517
- # call the callback, if provided
518
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
519
- progress_bar.update()
520
- if callback is not None and i % callback_steps == 0:
521
- step_idx = i // getattr(self.scheduler, "order", 1)
522
- callback(step_idx, t, latents)
523
-
524
- # if XLA_AVAILABLE:
525
- # xm.mark_step()
526
-
527
- if not output_type == "latent":
528
- # make sure the VAE is in float32 mode, as it overflows in float16
529
- needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
530
-
531
- if needs_upcasting:
532
- self.upcast_vae()
533
- latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
534
-
535
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
536
-
537
- # cast back to fp16 if needed
538
- if needs_upcasting:
539
- self.vae.to(dtype=torch.float16)
540
- else:
541
- image = latents
542
-
543
- if not output_type == "latent":
544
- # apply watermark if available
545
- if self.watermark is not None:
546
- image = self.watermark.apply_watermark(image)
547
- image = self.image_processor.postprocess(image, output_type=output_type)
548
- #maybe_nsfw = any(check_nsfw_images(image))
549
- #if maybe_nsfw:
550
- # print('This image could be NSFW so we return a blank image.')
551
- # return StableDiffusionXLPipelineOutput(images=[Image.new('RGB', (1024, 1024))])
552
-
553
- # Offload all models
554
- self.maybe_free_model_hooks()
555
-
556
- if not return_dict:
557
- return (image,)
558
-
559
- return StableDiffusionXLPipelineOutput(images=image)