Spaces:
Running
on
A10G
Running
on
A10G
rynmurdock
commited on
Commit
•
05e29c3
1
Parent(s):
f2cdd37
using torch.compile over sfast for compatibility; other smol changes
Browse files- app.py +25 -23
- requirements.txt +0 -1
app.py
CHANGED
@@ -1,23 +1,22 @@
|
|
1 |
DEVICE = 'cuda'
|
2 |
|
3 |
-
from sfast.compilers.diffusion_pipeline_compiler import (compile,
|
4 |
-
CompilationConfig)
|
5 |
-
config = CompilationConfig.Default()
|
6 |
-
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
from sklearn.svm import LinearSVC
|
10 |
from sklearn import preprocessing
|
11 |
import pandas as pd
|
12 |
|
13 |
-
from diffusers import LCMScheduler, AutoencoderTiny, EulerDiscreteScheduler, UNet2DConditionModel, AutoPipelineForText2Image
|
14 |
from diffusers.models import ImageProjection
|
15 |
import torch
|
16 |
|
|
|
|
|
17 |
import random
|
18 |
import time
|
19 |
|
20 |
-
|
|
|
21 |
from urllib.request import urlopen
|
22 |
|
23 |
from PIL import Image
|
@@ -27,7 +26,6 @@ from io import BytesIO, StringIO
|
|
27 |
from transformers import CLIPVisionModelWithProjection
|
28 |
from huggingface_hub import hf_hub_download
|
29 |
from safetensors.torch import load_file
|
30 |
-
#import spaces
|
31 |
|
32 |
prompt_list = [p for p in list(set(
|
33 |
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
|
@@ -35,6 +33,7 @@ prompt_list = [p for p in list(set(
|
|
35 |
start_time = time.time()
|
36 |
|
37 |
####################### Setup Model
|
|
|
38 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
39 |
sdxl_lightening = "ByteDance/SDXL-Lightning"
|
40 |
ckpt = "sdxl_lightning_2step_unet.safetensors"
|
@@ -46,20 +45,20 @@ pipe = AutoPipelineForText2Image.from_pretrained(model_id, unet=unet, torch_dtyp
|
|
46 |
pipe.unet._load_ip_adapter_weights(torch.load(hf_hub_download('h94/IP-Adapter', 'sdxl_models/ip-adapter_sdxl_vit-h.bin')))
|
47 |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl_vit-h.bin")
|
48 |
pipe.register_modules(image_encoder = image_encoder)
|
|
|
49 |
|
50 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
|
51 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
|
|
52 |
pipe.to(device=DEVICE)
|
53 |
-
pipe = compile(pipe, config=config)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
).images[0]
|
63 |
|
64 |
|
65 |
output_hidden_state = False
|
@@ -76,7 +75,6 @@ class BottleneckT5Autoencoder:
|
|
76 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512, torch_dtype=torch.bfloat16)
|
77 |
self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(self.device)
|
78 |
self.model.eval()
|
79 |
-
# self.model = torch.compile(self.model)
|
80 |
|
81 |
|
82 |
def embed(self, text: str) -> torch.FloatTensor:
|
@@ -88,7 +86,7 @@ class BottleneckT5Autoencoder:
|
|
88 |
encode_only=True,
|
89 |
)
|
90 |
|
91 |
-
def generate_from_latent(self, latent: torch.FloatTensor, max_length=512, temperature=1., top_p=.8,
|
92 |
dummy_text = '.'
|
93 |
dummy = self.embed(dummy_text)
|
94 |
perturb_vector = latent - dummy
|
@@ -101,7 +99,6 @@ class BottleneckT5Autoencoder:
|
|
101 |
temperature=temperature,
|
102 |
top_p=top_p,
|
103 |
num_return_sequences=1,
|
104 |
-
length_penalty=length_penalty,
|
105 |
min_new_tokens=min_new_tokens,
|
106 |
# num_beams=8,
|
107 |
)
|
@@ -109,8 +106,11 @@ class BottleneckT5Autoencoder:
|
|
109 |
|
110 |
autoencoder = BottleneckT5Autoencoder(model_path='thesephist/contra-bottleneck-t5-xl-wikipedia')
|
111 |
|
|
|
112 |
#######################
|
113 |
|
|
|
|
|
114 |
def generate(prompt, in_embs=None,):
|
115 |
if prompt != '':
|
116 |
print(prompt)
|
@@ -119,12 +119,12 @@ def generate(prompt, in_embs=None,):
|
|
119 |
else:
|
120 |
print('From embeds.')
|
121 |
in_embs = in_embs / in_embs.abs().max() * .15
|
122 |
-
text = autoencoder.generate_from_latent(in_embs.to('cuda').to(dtype=torch.bfloat16), temperature=.
|
123 |
return text, in_embs.to('cpu')
|
124 |
|
125 |
|
126 |
-
|
127 |
-
|
128 |
def predict(
|
129 |
prompt,
|
130 |
im_emb=None,
|
@@ -145,6 +145,7 @@ def predict(
|
|
145 |
width=1024,
|
146 |
num_inference_steps=2,
|
147 |
guidance_scale=0,
|
|
|
148 |
).images[0]
|
149 |
else:
|
150 |
image = pipe(
|
@@ -154,6 +155,7 @@ def predict(
|
|
154 |
width=1024,
|
155 |
num_inference_steps=2,
|
156 |
guidance_scale=0,
|
|
|
157 |
).images[0]
|
158 |
im_emb, _ = pipe.encode_image(
|
159 |
image, DEVICE, 1, output_hidden_state
|
@@ -232,7 +234,7 @@ def next_image(embs, img_embs, ys, calibrate_prompts):
|
|
232 |
rng_prompt = random.choice(prompt_list)
|
233 |
w = 1.4# if len(embs) % 2 == 0 else 0
|
234 |
|
235 |
-
prompt= '' if glob_idx %
|
236 |
prompt, _ = generate(prompt, in_embs=im_s)
|
237 |
print(prompt)
|
238 |
im_emb = autoencoder.embed(prompt)
|
|
|
1 |
DEVICE = 'cuda'
|
2 |
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
from sklearn.svm import LinearSVC
|
6 |
from sklearn import preprocessing
|
7 |
import pandas as pd
|
8 |
|
9 |
+
from diffusers import LCMScheduler, AutoencoderTiny, EulerDiscreteScheduler, UNet2DConditionModel, AutoPipelineForText2Image, DiffusionPipeline
|
10 |
from diffusers.models import ImageProjection
|
11 |
import torch
|
12 |
|
13 |
+
torch.set_float32_matmul_precision('high')
|
14 |
+
|
15 |
import random
|
16 |
import time
|
17 |
|
18 |
+
# TODO put back
|
19 |
+
import spaces
|
20 |
from urllib.request import urlopen
|
21 |
|
22 |
from PIL import Image
|
|
|
26 |
from transformers import CLIPVisionModelWithProjection
|
27 |
from huggingface_hub import hf_hub_download
|
28 |
from safetensors.torch import load_file
|
|
|
29 |
|
30 |
prompt_list = [p for p in list(set(
|
31 |
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
|
|
|
33 |
start_time = time.time()
|
34 |
|
35 |
####################### Setup Model
|
36 |
+
|
37 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
38 |
sdxl_lightening = "ByteDance/SDXL-Lightning"
|
39 |
ckpt = "sdxl_lightning_2step_unet.safetensors"
|
|
|
45 |
pipe.unet._load_ip_adapter_weights(torch.load(hf_hub_download('h94/IP-Adapter', 'sdxl_models/ip-adapter_sdxl_vit-h.bin')))
|
46 |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl_vit-h.bin")
|
47 |
pipe.register_modules(image_encoder = image_encoder)
|
48 |
+
pipe.set_ip_adapter_scale(0.8)
|
49 |
|
50 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
|
51 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
52 |
+
|
53 |
pipe.to(device=DEVICE)
|
|
|
54 |
|
55 |
+
|
56 |
+
# TODO put back
|
57 |
+
@spaces.GPU
|
58 |
+
def compile_em():
|
59 |
+
pipe.unet = torch.compile(pipe.unet)
|
60 |
+
pipe.vae = torch.compile(pipe.vae)
|
61 |
+
autoencoder.model.forward = torch.compile(autoencoder.model.forward, backend='inductor', dynamic=True)
|
|
|
62 |
|
63 |
|
64 |
output_hidden_state = False
|
|
|
75 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512, torch_dtype=torch.bfloat16)
|
76 |
self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(self.device)
|
77 |
self.model.eval()
|
|
|
78 |
|
79 |
|
80 |
def embed(self, text: str) -> torch.FloatTensor:
|
|
|
86 |
encode_only=True,
|
87 |
)
|
88 |
|
89 |
+
def generate_from_latent(self, latent: torch.FloatTensor, max_length=512, temperature=1., top_p=.8, min_new_tokens=30) -> str:
|
90 |
dummy_text = '.'
|
91 |
dummy = self.embed(dummy_text)
|
92 |
perturb_vector = latent - dummy
|
|
|
99 |
temperature=temperature,
|
100 |
top_p=top_p,
|
101 |
num_return_sequences=1,
|
|
|
102 |
min_new_tokens=min_new_tokens,
|
103 |
# num_beams=8,
|
104 |
)
|
|
|
106 |
|
107 |
autoencoder = BottleneckT5Autoencoder(model_path='thesephist/contra-bottleneck-t5-xl-wikipedia')
|
108 |
|
109 |
+
compile_em()
|
110 |
#######################
|
111 |
|
112 |
+
# TODO put back
|
113 |
+
@spaces.GPU
|
114 |
def generate(prompt, in_embs=None,):
|
115 |
if prompt != '':
|
116 |
print(prompt)
|
|
|
119 |
else:
|
120 |
print('From embeds.')
|
121 |
in_embs = in_embs / in_embs.abs().max() * .15
|
122 |
+
text = autoencoder.generate_from_latent(in_embs.to('cuda').to(dtype=torch.bfloat16), temperature=.8, top_p=.94, min_new_tokens=5)
|
123 |
return text, in_embs.to('cpu')
|
124 |
|
125 |
|
126 |
+
# TODO put back
|
127 |
+
@spaces.GPU
|
128 |
def predict(
|
129 |
prompt,
|
130 |
im_emb=None,
|
|
|
145 |
width=1024,
|
146 |
num_inference_steps=2,
|
147 |
guidance_scale=0,
|
148 |
+
# timesteps=[800],
|
149 |
).images[0]
|
150 |
else:
|
151 |
image = pipe(
|
|
|
155 |
width=1024,
|
156 |
num_inference_steps=2,
|
157 |
guidance_scale=0,
|
158 |
+
# timesteps=[800],
|
159 |
).images[0]
|
160 |
im_emb, _ = pipe.encode_image(
|
161 |
image, DEVICE, 1, output_hidden_state
|
|
|
234 |
rng_prompt = random.choice(prompt_list)
|
235 |
w = 1.4# if len(embs) % 2 == 0 else 0
|
236 |
|
237 |
+
prompt= '' if glob_idx % 3 == 0 else rng_prompt
|
238 |
prompt, _ = generate(prompt, in_embs=im_s)
|
239 |
print(prompt)
|
240 |
im_emb = autoencoder.embed(prompt)
|
requirements.txt
CHANGED
@@ -8,4 +8,3 @@ diffusers
|
|
8 |
accelerate
|
9 |
transformers
|
10 |
peft
|
11 |
-
https://github.com/chengzeyi/stable-fast/releases/download/v1.0.4/stable_fast-1.0.4+torch220cu121-cp310-cp310-manylinux2014_x86_64.whl
|
|
|
8 |
accelerate
|
9 |
transformers
|
10 |
peft
|
|