Spaces:
Running
on
A10G
Running
on
A10G
rynmurdock
commited on
Commit
•
6f68207
1
Parent(s):
1146833
May be faster; will be different qualitatively; may revert
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
DEVICE = '
|
2 |
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
@@ -6,11 +6,9 @@ from sklearn.svm import LinearSVC
|
|
6 |
from sklearn import preprocessing
|
7 |
import pandas as pd
|
8 |
|
9 |
-
from diffusers import LCMScheduler, AutoencoderTiny, EulerDiscreteScheduler, UNet2DConditionModel
|
10 |
from diffusers.models import ImageProjection
|
11 |
-
from patch_sdxl import SDEmb
|
12 |
import torch
|
13 |
-
import spaces
|
14 |
|
15 |
import random
|
16 |
import time
|
@@ -22,8 +20,10 @@ from PIL import Image
|
|
22 |
import requests
|
23 |
from io import BytesIO, StringIO
|
24 |
|
|
|
25 |
from huggingface_hub import hf_hub_download
|
26 |
from safetensors.torch import load_file
|
|
|
27 |
|
28 |
prompt_list = [p for p in list(set(
|
29 |
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
|
@@ -36,11 +36,17 @@ sdxl_lightening = "ByteDance/SDXL-Lightning"
|
|
36 |
ckpt = "sdxl_lightning_2step_unet.safetensors"
|
37 |
unet = UNet2DConditionModel.from_config(model_id, subfolder="unet").to("cuda", torch.float16)
|
38 |
unet.load_state_dict(load_file(hf_hub_download(sdxl_lightening, ckpt), device="cuda"))
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
|
41 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
42 |
pipe.to(device='cuda')
|
43 |
-
|
44 |
|
45 |
output_hidden_state = False
|
46 |
#######################
|
@@ -54,14 +60,27 @@ def predict(
|
|
54 |
"""Run a single prediction on the model"""
|
55 |
with torch.no_grad():
|
56 |
if im_emb == None:
|
57 |
-
im_emb = torch.zeros(1,
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
).images[0]
|
66 |
im_emb, _ = pipe.encode_image(
|
67 |
image, 'cuda', 1, output_hidden_state
|
@@ -77,8 +96,8 @@ def next_image(embs, ys, calibrate_prompts):
|
|
77 |
|
78 |
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
|
79 |
if len(calibrate_prompts) == 0 and len(list(set(ys))) <= 1:
|
80 |
-
embs.append(.01*torch.randn(1,
|
81 |
-
embs.append(.01*torch.randn(1,
|
82 |
ys.append(0)
|
83 |
ys.append(1)
|
84 |
|
@@ -92,35 +111,41 @@ def next_image(embs, ys, calibrate_prompts):
|
|
92 |
return image, embs, ys, calibrate_prompts
|
93 |
else:
|
94 |
print('######### Roaming #########')
|
95 |
-
# sample
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
scaler = preprocessing.StandardScaler().fit(feature_embs)
|
108 |
feature_embs = scaler.transform(feature_embs)
|
109 |
-
print(np.array(feature_embs).shape, np.array(ys).shape)
|
110 |
|
111 |
-
lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(
|
112 |
lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
|
113 |
lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
|
114 |
|
115 |
-
|
116 |
rng_prompt = random.choice(prompt_list)
|
117 |
-
|
118 |
w = 1# if len(embs) % 2 == 0 else 0
|
119 |
im_emb = w * lin_class.coef_.to(device=DEVICE, dtype=torch.float16)
|
120 |
-
prompt= '
|
121 |
-
print(prompt)
|
122 |
image, im_emb = predict(prompt, im_emb)
|
123 |
embs.append(im_emb)
|
|
|
|
|
|
|
124 |
return image, embs, ys, calibrate_prompts
|
125 |
|
126 |
|
|
|
1 |
+
DEVICE = 'cuda'
|
2 |
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
6 |
from sklearn import preprocessing
|
7 |
import pandas as pd
|
8 |
|
9 |
+
from diffusers import LCMScheduler, AutoencoderTiny, EulerDiscreteScheduler, UNet2DConditionModel, AutoPipelineForText2Image
|
10 |
from diffusers.models import ImageProjection
|
|
|
11 |
import torch
|
|
|
12 |
|
13 |
import random
|
14 |
import time
|
|
|
20 |
import requests
|
21 |
from io import BytesIO, StringIO
|
22 |
|
23 |
+
from transformers import CLIPVisionModelWithProjection
|
24 |
from huggingface_hub import hf_hub_download
|
25 |
from safetensors.torch import load_file
|
26 |
+
import spaces
|
27 |
|
28 |
prompt_list = [p for p in list(set(
|
29 |
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
|
|
|
36 |
ckpt = "sdxl_lightning_2step_unet.safetensors"
|
37 |
unet = UNet2DConditionModel.from_config(model_id, subfolder="unet").to("cuda", torch.float16)
|
38 |
unet.load_state_dict(load_file(hf_hub_download(sdxl_lightening, ckpt), device="cuda"))
|
39 |
+
|
40 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=torch.float16,).to("cuda")
|
41 |
+
pipe = AutoPipelineForText2Image.from_pretrained(model_id, unet=unet, torch_dtype=torch.float16, variant="fp16", image_encoder=image_encoder).to("cuda")
|
42 |
+
pipe.unet._load_ip_adapter_weights(torch.load(hf_hub_download('h94/IP-Adapter', 'sdxl_models/ip-adapter_sdxl_vit-h.bin')))
|
43 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl_vit-h.bin")
|
44 |
+
pipe.register_modules(image_encoder = image_encoder)
|
45 |
+
|
46 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
|
47 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
48 |
pipe.to(device='cuda')
|
49 |
+
|
50 |
|
51 |
output_hidden_state = False
|
52 |
#######################
|
|
|
60 |
"""Run a single prediction on the model"""
|
61 |
with torch.no_grad():
|
62 |
if im_emb == None:
|
63 |
+
im_emb = torch.zeros(1, 1024, dtype=torch.float16, device='cuda')
|
64 |
+
|
65 |
+
im_emb = [im_emb.to('cuda').unsqueeze(0)]
|
66 |
+
if prompt == '':
|
67 |
+
image = pipe(
|
68 |
+
prompt_embeds=torch.zeros(1, 1, 2048, dtype=torch.float16, device='cuda'),
|
69 |
+
pooled_prompt_embeds=torch.zeros(1, 1280, dtype=torch.float16, device='cuda'),
|
70 |
+
ip_adapter_image_embeds=im_emb,
|
71 |
+
height=1024,
|
72 |
+
width=1024,
|
73 |
+
num_inference_steps=2,
|
74 |
+
guidance_scale=0,
|
75 |
+
).images[0]
|
76 |
+
else:
|
77 |
+
image = pipe(
|
78 |
+
prompt=prompt,
|
79 |
+
ip_adapter_image_embeds=im_emb,
|
80 |
+
height=1024,
|
81 |
+
width=1024,
|
82 |
+
num_inference_steps=2,
|
83 |
+
guidance_scale=0,
|
84 |
).images[0]
|
85 |
im_emb, _ = pipe.encode_image(
|
86 |
image, 'cuda', 1, output_hidden_state
|
|
|
96 |
|
97 |
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
|
98 |
if len(calibrate_prompts) == 0 and len(list(set(ys))) <= 1:
|
99 |
+
embs.append(.01*torch.randn(1, 1024))
|
100 |
+
embs.append(.01*torch.randn(1, 1024))
|
101 |
ys.append(0)
|
102 |
ys.append(1)
|
103 |
|
|
|
111 |
return image, embs, ys, calibrate_prompts
|
112 |
else:
|
113 |
print('######### Roaming #########')
|
114 |
+
# sample a .8 of rated embeddings for some stochasticity, or at least two embeddings.
|
115 |
+
n_to_choose = max(int(len(embs)*.8), 2)
|
116 |
+
indices = random.sample(range(len(embs)), n_to_choose)
|
117 |
+
|
118 |
+
# also add the latest 0 and the latest 1
|
119 |
+
has_0 = False
|
120 |
+
has_1 = False
|
121 |
+
for i in reversed(range(len(ys))):
|
122 |
+
if ys[i] == 0 and has_0 == False:
|
123 |
+
indices.append(i)
|
124 |
+
has_0 = True
|
125 |
+
elif ys[i] == 1 and has_1 == False:
|
126 |
+
indices.append(i)
|
127 |
+
has_1 = True
|
128 |
+
if has_0 and has_1:
|
129 |
+
break
|
130 |
+
|
131 |
+
feature_embs = np.array(torch.cat([embs[i] for i in indices]).to('cpu'))
|
132 |
scaler = preprocessing.StandardScaler().fit(feature_embs)
|
133 |
feature_embs = scaler.transform(feature_embs)
|
|
|
134 |
|
135 |
+
lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(feature_embs, np.array([ys[i] for i in indices]))
|
136 |
lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
|
137 |
lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
|
138 |
|
|
|
139 |
rng_prompt = random.choice(prompt_list)
|
|
|
140 |
w = 1# if len(embs) % 2 == 0 else 0
|
141 |
im_emb = w * lin_class.coef_.to(device=DEVICE, dtype=torch.float16)
|
142 |
+
prompt= '' if glob_idx % 2 == 0 else rng_prompt
|
143 |
+
print(prompt, len(ys))
|
144 |
image, im_emb = predict(prompt, im_emb)
|
145 |
embs.append(im_emb)
|
146 |
+
if len(embs) > 100:
|
147 |
+
embs.pop(0)
|
148 |
+
ys.pop(0)
|
149 |
return image, embs, ys, calibrate_prompts
|
150 |
|
151 |
|