Spaces:
Running
on
A10G
Running
on
A10G
rynmurdock
commited on
Commit
•
dd107f5
1
Parent(s):
56039d7
Delete patch_sdxl.py
Browse files- patch_sdxl.py +0 -547
patch_sdxl.py
DELETED
@@ -1,547 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import inspect
|
5 |
-
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
6 |
-
|
7 |
-
from diffusers import StableDiffusionXLPipeline
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from packaging import version
|
11 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
12 |
-
|
13 |
-
from diffusers.configuration_utils import FrozenDict
|
14 |
-
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
15 |
-
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
16 |
-
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
17 |
-
from diffusers.models.attention_processor import FusedAttnProcessor2_0
|
18 |
-
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
19 |
-
from diffusers.schedulers import KarrasDiffusionSchedulers
|
20 |
-
from diffusers.utils import (
|
21 |
-
USE_PEFT_BACKEND,
|
22 |
-
deprecate,
|
23 |
-
logging,
|
24 |
-
replace_example_docstring,
|
25 |
-
scale_lora_layers,
|
26 |
-
unscale_lora_layers,
|
27 |
-
)
|
28 |
-
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
29 |
-
|
30 |
-
|
31 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
-
|
33 |
-
EXAMPLE_DOC_STRING = """
|
34 |
-
Examples:
|
35 |
-
```py
|
36 |
-
>>> import torch
|
37 |
-
>>> from diffusers import StableDiffusionPipeline
|
38 |
-
|
39 |
-
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
40 |
-
>>> pipe = pipe.to("cuda")
|
41 |
-
|
42 |
-
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
43 |
-
>>> image = pipe(prompt).images[0]
|
44 |
-
```
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
49 |
-
"""
|
50 |
-
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
51 |
-
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
52 |
-
"""
|
53 |
-
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
54 |
-
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
55 |
-
# rescale the results from guidance (fixes overexposure)
|
56 |
-
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
57 |
-
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
58 |
-
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
59 |
-
return noise_cfg
|
60 |
-
|
61 |
-
|
62 |
-
def retrieve_timesteps(
|
63 |
-
scheduler,
|
64 |
-
num_inference_steps: Optional[int] = None,
|
65 |
-
device: Optional[Union[str, torch.device]] = None,
|
66 |
-
timesteps: Optional[List[int]] = None,
|
67 |
-
**kwargs,
|
68 |
-
):
|
69 |
-
"""
|
70 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
71 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
72 |
-
|
73 |
-
Args:
|
74 |
-
scheduler (`SchedulerMixin`):
|
75 |
-
The scheduler to get timesteps from.
|
76 |
-
num_inference_steps (`int`):
|
77 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
78 |
-
`timesteps` must be `None`.
|
79 |
-
device (`str` or `torch.device`, *optional*):
|
80 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
81 |
-
timesteps (`List[int]`, *optional*):
|
82 |
-
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
83 |
-
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
84 |
-
must be `None`.
|
85 |
-
|
86 |
-
Returns:
|
87 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
88 |
-
second element is the number of inference steps.
|
89 |
-
"""
|
90 |
-
if timesteps is not None:
|
91 |
-
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
92 |
-
if not accepts_timesteps:
|
93 |
-
raise ValueError(
|
94 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
95 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
96 |
-
)
|
97 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
98 |
-
timesteps = scheduler.timesteps
|
99 |
-
num_inference_steps = len(timesteps)
|
100 |
-
else:
|
101 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
102 |
-
timesteps = scheduler.timesteps
|
103 |
-
return timesteps, num_inference_steps
|
104 |
-
|
105 |
-
|
106 |
-
class SDEmb(StableDiffusionXLPipeline):
|
107 |
-
@torch.no_grad()
|
108 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
109 |
-
def __call__(
|
110 |
-
self,
|
111 |
-
prompt: Union[str, List[str]] = None,
|
112 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
113 |
-
height: Optional[int] = None,
|
114 |
-
width: Optional[int] = None,
|
115 |
-
num_inference_steps: int = 50,
|
116 |
-
timesteps: List[int] = None,
|
117 |
-
denoising_end: Optional[float] = None,
|
118 |
-
guidance_scale: float = 5.0,
|
119 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
120 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
121 |
-
num_images_per_prompt: Optional[int] = 1,
|
122 |
-
eta: float = 0.0,
|
123 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
124 |
-
latents: Optional[torch.FloatTensor] = None,
|
125 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
126 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
127 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
128 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
129 |
-
ip_adapter_image: Optional[PipelineImageInput] = None,
|
130 |
-
output_type: Optional[str] = "pil",
|
131 |
-
return_dict: bool = True,
|
132 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
133 |
-
guidance_rescale: float = 0.0,
|
134 |
-
original_size: Optional[Tuple[int, int]] = None,
|
135 |
-
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
136 |
-
target_size: Optional[Tuple[int, int]] = None,
|
137 |
-
negative_original_size: Optional[Tuple[int, int]] = None,
|
138 |
-
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
139 |
-
negative_target_size: Optional[Tuple[int, int]] = None,
|
140 |
-
clip_skip: Optional[int] = None,
|
141 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
142 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
143 |
-
ip_adapter_emb=None,
|
144 |
-
**kwargs,
|
145 |
-
):
|
146 |
-
r"""
|
147 |
-
Function invoked when calling the pipeline for generation.
|
148 |
-
|
149 |
-
Args:
|
150 |
-
prompt (`str` or `List[str]`, *optional*):
|
151 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
152 |
-
instead.
|
153 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
154 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
155 |
-
used in both text-encoders
|
156 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
157 |
-
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
158 |
-
Anything below 512 pixels won't work well for
|
159 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
160 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
161 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
162 |
-
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
163 |
-
Anything below 512 pixels won't work well for
|
164 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
165 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
166 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
167 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
168 |
-
expense of slower inference.
|
169 |
-
timesteps (`List[int]`, *optional*):
|
170 |
-
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
171 |
-
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
172 |
-
passed will be used. Must be in descending order.
|
173 |
-
denoising_end (`float`, *optional*):
|
174 |
-
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
175 |
-
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
176 |
-
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
177 |
-
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
178 |
-
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
179 |
-
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
180 |
-
guidance_scale (`float`, *optional*, defaults to 5.0):
|
181 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
182 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
183 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
184 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
185 |
-
usually at the expense of lower image quality.
|
186 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
187 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
188 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
189 |
-
less than `1`).
|
190 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
191 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
192 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
193 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
194 |
-
The number of images to generate per prompt.
|
195 |
-
eta (`float`, *optional*, defaults to 0.0):
|
196 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
197 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
198 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
199 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
200 |
-
to make generation deterministic.
|
201 |
-
latents (`torch.FloatTensor`, *optional*):
|
202 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
203 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
204 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
205 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
206 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
207 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
208 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
209 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
210 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
211 |
-
argument.
|
212 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
213 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
214 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
215 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
216 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
217 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
218 |
-
input argument.
|
219 |
-
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
220 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
221 |
-
The output format of the generate image. Choose between
|
222 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
223 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
224 |
-
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
225 |
-
of a plain tuple.
|
226 |
-
cross_attention_kwargs (`dict`, *optional*):
|
227 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
228 |
-
`self.processor` in
|
229 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
230 |
-
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
231 |
-
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
232 |
-
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
233 |
-
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
234 |
-
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
235 |
-
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
236 |
-
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
237 |
-
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
238 |
-
explained in section 2.2 of
|
239 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
240 |
-
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
241 |
-
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
242 |
-
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
243 |
-
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
244 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
245 |
-
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
246 |
-
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
247 |
-
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
248 |
-
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
249 |
-
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
250 |
-
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
251 |
-
micro-conditioning as explained in section 2.2 of
|
252 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
253 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
254 |
-
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
255 |
-
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
256 |
-
micro-conditioning as explained in section 2.2 of
|
257 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
258 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
259 |
-
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
260 |
-
To negatively condition the generation process based on a target image resolution. It should be as same
|
261 |
-
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
262 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
263 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
264 |
-
callback_on_step_end (`Callable`, *optional*):
|
265 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
266 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
267 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
268 |
-
`callback_on_step_end_tensor_inputs`.
|
269 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
270 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
271 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
272 |
-
`._callback_tensor_inputs` attribute of your pipeline class.
|
273 |
-
|
274 |
-
Examples:
|
275 |
-
|
276 |
-
Returns:
|
277 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
278 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
279 |
-
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
280 |
-
"""
|
281 |
-
|
282 |
-
callback = kwargs.pop("callback", None)
|
283 |
-
callback_steps = kwargs.pop("callback_steps", None)
|
284 |
-
|
285 |
-
if callback is not None:
|
286 |
-
deprecate(
|
287 |
-
"callback",
|
288 |
-
"1.0.0",
|
289 |
-
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
290 |
-
)
|
291 |
-
if callback_steps is not None:
|
292 |
-
deprecate(
|
293 |
-
"callback_steps",
|
294 |
-
"1.0.0",
|
295 |
-
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
296 |
-
)
|
297 |
-
|
298 |
-
# 0. Default height and width to unet
|
299 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
300 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
301 |
-
|
302 |
-
original_size = original_size or (height, width)
|
303 |
-
target_size = target_size or (height, width)
|
304 |
-
|
305 |
-
# 1. Check inputs. Raise error if not correct
|
306 |
-
self.check_inputs(
|
307 |
-
prompt,
|
308 |
-
prompt_2,
|
309 |
-
height,
|
310 |
-
width,
|
311 |
-
callback_steps,
|
312 |
-
negative_prompt,
|
313 |
-
negative_prompt_2,
|
314 |
-
prompt_embeds,
|
315 |
-
negative_prompt_embeds,
|
316 |
-
pooled_prompt_embeds,
|
317 |
-
negative_pooled_prompt_embeds,
|
318 |
-
callback_on_step_end_tensor_inputs,
|
319 |
-
)
|
320 |
-
|
321 |
-
self._guidance_scale = guidance_scale
|
322 |
-
self._guidance_rescale = guidance_rescale
|
323 |
-
self._clip_skip = clip_skip
|
324 |
-
self._cross_attention_kwargs = cross_attention_kwargs
|
325 |
-
self._denoising_end = denoising_end
|
326 |
-
self._interrupt = False
|
327 |
-
|
328 |
-
# 2. Define call parameters
|
329 |
-
if prompt is not None and isinstance(prompt, str):
|
330 |
-
batch_size = 1
|
331 |
-
elif prompt is not None and isinstance(prompt, list):
|
332 |
-
batch_size = len(prompt)
|
333 |
-
else:
|
334 |
-
batch_size = prompt_embeds.shape[0]
|
335 |
-
|
336 |
-
device = self._execution_device
|
337 |
-
|
338 |
-
# 3. Encode input prompt
|
339 |
-
lora_scale = (
|
340 |
-
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
341 |
-
)
|
342 |
-
|
343 |
-
(
|
344 |
-
prompt_embeds,
|
345 |
-
negative_prompt_embeds,
|
346 |
-
pooled_prompt_embeds,
|
347 |
-
negative_pooled_prompt_embeds,
|
348 |
-
) = self.encode_prompt(
|
349 |
-
prompt=prompt,
|
350 |
-
prompt_2=prompt_2,
|
351 |
-
device=device,
|
352 |
-
num_images_per_prompt=num_images_per_prompt,
|
353 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
354 |
-
negative_prompt=negative_prompt,
|
355 |
-
negative_prompt_2=negative_prompt_2,
|
356 |
-
prompt_embeds=prompt_embeds,
|
357 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
358 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
359 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
360 |
-
lora_scale=lora_scale,
|
361 |
-
clip_skip=self.clip_skip,
|
362 |
-
)
|
363 |
-
|
364 |
-
# 4. Prepare timesteps
|
365 |
-
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
366 |
-
|
367 |
-
# 5. Prepare latent variables
|
368 |
-
num_channels_latents = self.unet.config.in_channels
|
369 |
-
latents = self.prepare_latents(
|
370 |
-
batch_size * num_images_per_prompt,
|
371 |
-
num_channels_latents,
|
372 |
-
height,
|
373 |
-
width,
|
374 |
-
prompt_embeds.dtype,
|
375 |
-
device,
|
376 |
-
generator,
|
377 |
-
latents,
|
378 |
-
)
|
379 |
-
|
380 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
381 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
382 |
-
|
383 |
-
# 7. Prepare added time ids & embeddings
|
384 |
-
add_text_embeds = pooled_prompt_embeds
|
385 |
-
if self.text_encoder_2 is None:
|
386 |
-
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
387 |
-
else:
|
388 |
-
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
389 |
-
|
390 |
-
add_time_ids = self._get_add_time_ids(
|
391 |
-
original_size,
|
392 |
-
crops_coords_top_left,
|
393 |
-
target_size,
|
394 |
-
dtype=prompt_embeds.dtype,
|
395 |
-
text_encoder_projection_dim=text_encoder_projection_dim,
|
396 |
-
)
|
397 |
-
if negative_original_size is not None and negative_target_size is not None:
|
398 |
-
negative_add_time_ids = self._get_add_time_ids(
|
399 |
-
negative_original_size,
|
400 |
-
negative_crops_coords_top_left,
|
401 |
-
negative_target_size,
|
402 |
-
dtype=prompt_embeds.dtype,
|
403 |
-
text_encoder_projection_dim=text_encoder_projection_dim,
|
404 |
-
)
|
405 |
-
else:
|
406 |
-
negative_add_time_ids = add_time_ids
|
407 |
-
|
408 |
-
if self.do_classifier_free_guidance:
|
409 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
410 |
-
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
411 |
-
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
412 |
-
|
413 |
-
prompt_embeds = prompt_embeds.to(device)
|
414 |
-
add_text_embeds = add_text_embeds.to(device)
|
415 |
-
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
416 |
-
|
417 |
-
if ip_adapter_emb is not None:
|
418 |
-
image_embeds = ip_adapter_emb
|
419 |
-
|
420 |
-
elif ip_adapter_image is not None:
|
421 |
-
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
|
422 |
-
image_embeds, negative_image_embeds = self.encode_image(
|
423 |
-
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
|
424 |
-
)
|
425 |
-
if self.do_classifier_free_guidance:
|
426 |
-
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
427 |
-
|
428 |
-
# 8. Denoising loop
|
429 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
430 |
-
|
431 |
-
# 8.1 Apply denoising_end
|
432 |
-
if (
|
433 |
-
self.denoising_end is not None
|
434 |
-
and isinstance(self.denoising_end, float)
|
435 |
-
and self.denoising_end > 0
|
436 |
-
and self.denoising_end < 1
|
437 |
-
):
|
438 |
-
discrete_timestep_cutoff = int(
|
439 |
-
round(
|
440 |
-
self.scheduler.config.num_train_timesteps
|
441 |
-
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
442 |
-
)
|
443 |
-
)
|
444 |
-
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
445 |
-
timesteps = timesteps[:num_inference_steps]
|
446 |
-
|
447 |
-
# 9. Optionally get Guidance Scale Embedding
|
448 |
-
timestep_cond = None
|
449 |
-
if self.unet.config.time_cond_proj_dim is not None:
|
450 |
-
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
451 |
-
timestep_cond = self.get_guidance_scale_embedding(
|
452 |
-
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
453 |
-
).to(device=device, dtype=latents.dtype)
|
454 |
-
|
455 |
-
self._num_timesteps = len(timesteps)
|
456 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
457 |
-
for i, t in enumerate(timesteps):
|
458 |
-
if self.interrupt:
|
459 |
-
continue
|
460 |
-
|
461 |
-
# expand the latents if we are doing classifier free guidance
|
462 |
-
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
463 |
-
|
464 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
465 |
-
|
466 |
-
# predict the noise residual
|
467 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
468 |
-
if ip_adapter_image is not None or ip_adapter_emb is not None:
|
469 |
-
added_cond_kwargs["image_embeds"] = image_embeds
|
470 |
-
noise_pred = self.unet(
|
471 |
-
latent_model_input,
|
472 |
-
t,
|
473 |
-
encoder_hidden_states=prompt_embeds,
|
474 |
-
timestep_cond=timestep_cond,
|
475 |
-
cross_attention_kwargs=self.cross_attention_kwargs,
|
476 |
-
added_cond_kwargs=added_cond_kwargs,
|
477 |
-
return_dict=False,
|
478 |
-
)[0]
|
479 |
-
|
480 |
-
# perform guidance
|
481 |
-
if self.do_classifier_free_guidance:
|
482 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
483 |
-
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
484 |
-
|
485 |
-
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
486 |
-
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
487 |
-
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
488 |
-
|
489 |
-
# compute the previous noisy sample x_t -> x_t-1
|
490 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
491 |
-
|
492 |
-
if callback_on_step_end is not None:
|
493 |
-
callback_kwargs = {}
|
494 |
-
for k in callback_on_step_end_tensor_inputs:
|
495 |
-
callback_kwargs[k] = locals()[k]
|
496 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
497 |
-
|
498 |
-
latents = callback_outputs.pop("latents", latents)
|
499 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
500 |
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
501 |
-
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
502 |
-
negative_pooled_prompt_embeds = callback_outputs.pop(
|
503 |
-
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
504 |
-
)
|
505 |
-
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
506 |
-
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
507 |
-
|
508 |
-
# call the callback, if provided
|
509 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
510 |
-
progress_bar.update()
|
511 |
-
if callback is not None and i % callback_steps == 0:
|
512 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
513 |
-
callback(step_idx, t, latents)
|
514 |
-
|
515 |
-
# if XLA_AVAILABLE:
|
516 |
-
# xm.mark_step()
|
517 |
-
|
518 |
-
if not output_type == "latent":
|
519 |
-
# make sure the VAE is in float32 mode, as it overflows in float16
|
520 |
-
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
521 |
-
|
522 |
-
if needs_upcasting:
|
523 |
-
self.upcast_vae()
|
524 |
-
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
525 |
-
|
526 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
527 |
-
|
528 |
-
# cast back to fp16 if needed
|
529 |
-
if needs_upcasting:
|
530 |
-
self.vae.to(dtype=torch.float16)
|
531 |
-
else:
|
532 |
-
image = latents
|
533 |
-
|
534 |
-
if not output_type == "latent":
|
535 |
-
# apply watermark if available
|
536 |
-
if self.watermark is not None:
|
537 |
-
image = self.watermark.apply_watermark(image)
|
538 |
-
|
539 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
540 |
-
|
541 |
-
# Offload all models
|
542 |
-
self.maybe_free_model_hooks()
|
543 |
-
|
544 |
-
if not return_dict:
|
545 |
-
return (image,)
|
546 |
-
|
547 |
-
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|