rynmurdock commited on
Commit
dd107f5
1 Parent(s): 56039d7

Delete patch_sdxl.py

Browse files
Files changed (1) hide show
  1. patch_sdxl.py +0 -547
patch_sdxl.py DELETED
@@ -1,547 +0,0 @@
1
-
2
-
3
-
4
- import inspect
5
- from typing import Any, Callable, Dict, List, Optional, Union, Tuple
6
-
7
- from diffusers import StableDiffusionXLPipeline
8
-
9
- import torch
10
- from packaging import version
11
- from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
12
-
13
- from diffusers.configuration_utils import FrozenDict
14
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
15
- from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
16
- from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
17
- from diffusers.models.attention_processor import FusedAttnProcessor2_0
18
- from diffusers.models.lora import adjust_lora_scale_text_encoder
19
- from diffusers.schedulers import KarrasDiffusionSchedulers
20
- from diffusers.utils import (
21
- USE_PEFT_BACKEND,
22
- deprecate,
23
- logging,
24
- replace_example_docstring,
25
- scale_lora_layers,
26
- unscale_lora_layers,
27
- )
28
- from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
29
-
30
-
31
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
32
-
33
- EXAMPLE_DOC_STRING = """
34
- Examples:
35
- ```py
36
- >>> import torch
37
- >>> from diffusers import StableDiffusionPipeline
38
-
39
- >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
40
- >>> pipe = pipe.to("cuda")
41
-
42
- >>> prompt = "a photo of an astronaut riding a horse on mars"
43
- >>> image = pipe(prompt).images[0]
44
- ```
45
- """
46
-
47
-
48
- def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
49
- """
50
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
51
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
52
- """
53
- std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
54
- std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
55
- # rescale the results from guidance (fixes overexposure)
56
- noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
57
- # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
58
- noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
59
- return noise_cfg
60
-
61
-
62
- def retrieve_timesteps(
63
- scheduler,
64
- num_inference_steps: Optional[int] = None,
65
- device: Optional[Union[str, torch.device]] = None,
66
- timesteps: Optional[List[int]] = None,
67
- **kwargs,
68
- ):
69
- """
70
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
71
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
72
-
73
- Args:
74
- scheduler (`SchedulerMixin`):
75
- The scheduler to get timesteps from.
76
- num_inference_steps (`int`):
77
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
78
- `timesteps` must be `None`.
79
- device (`str` or `torch.device`, *optional*):
80
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
81
- timesteps (`List[int]`, *optional*):
82
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
83
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
84
- must be `None`.
85
-
86
- Returns:
87
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
88
- second element is the number of inference steps.
89
- """
90
- if timesteps is not None:
91
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
92
- if not accepts_timesteps:
93
- raise ValueError(
94
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
95
- f" timestep schedules. Please check whether you are using the correct scheduler."
96
- )
97
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
98
- timesteps = scheduler.timesteps
99
- num_inference_steps = len(timesteps)
100
- else:
101
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
102
- timesteps = scheduler.timesteps
103
- return timesteps, num_inference_steps
104
-
105
-
106
- class SDEmb(StableDiffusionXLPipeline):
107
- @torch.no_grad()
108
- @replace_example_docstring(EXAMPLE_DOC_STRING)
109
- def __call__(
110
- self,
111
- prompt: Union[str, List[str]] = None,
112
- prompt_2: Optional[Union[str, List[str]]] = None,
113
- height: Optional[int] = None,
114
- width: Optional[int] = None,
115
- num_inference_steps: int = 50,
116
- timesteps: List[int] = None,
117
- denoising_end: Optional[float] = None,
118
- guidance_scale: float = 5.0,
119
- negative_prompt: Optional[Union[str, List[str]]] = None,
120
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
121
- num_images_per_prompt: Optional[int] = 1,
122
- eta: float = 0.0,
123
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
124
- latents: Optional[torch.FloatTensor] = None,
125
- prompt_embeds: Optional[torch.FloatTensor] = None,
126
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
127
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
128
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
129
- ip_adapter_image: Optional[PipelineImageInput] = None,
130
- output_type: Optional[str] = "pil",
131
- return_dict: bool = True,
132
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
133
- guidance_rescale: float = 0.0,
134
- original_size: Optional[Tuple[int, int]] = None,
135
- crops_coords_top_left: Tuple[int, int] = (0, 0),
136
- target_size: Optional[Tuple[int, int]] = None,
137
- negative_original_size: Optional[Tuple[int, int]] = None,
138
- negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
139
- negative_target_size: Optional[Tuple[int, int]] = None,
140
- clip_skip: Optional[int] = None,
141
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
142
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
143
- ip_adapter_emb=None,
144
- **kwargs,
145
- ):
146
- r"""
147
- Function invoked when calling the pipeline for generation.
148
-
149
- Args:
150
- prompt (`str` or `List[str]`, *optional*):
151
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
152
- instead.
153
- prompt_2 (`str` or `List[str]`, *optional*):
154
- The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
155
- used in both text-encoders
156
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
157
- The height in pixels of the generated image. This is set to 1024 by default for the best results.
158
- Anything below 512 pixels won't work well for
159
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
160
- and checkpoints that are not specifically fine-tuned on low resolutions.
161
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
162
- The width in pixels of the generated image. This is set to 1024 by default for the best results.
163
- Anything below 512 pixels won't work well for
164
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
165
- and checkpoints that are not specifically fine-tuned on low resolutions.
166
- num_inference_steps (`int`, *optional*, defaults to 50):
167
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
168
- expense of slower inference.
169
- timesteps (`List[int]`, *optional*):
170
- Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
171
- in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
172
- passed will be used. Must be in descending order.
173
- denoising_end (`float`, *optional*):
174
- When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
175
- completed before it is intentionally prematurely terminated. As a result, the returned sample will
176
- still retain a substantial amount of noise as determined by the discrete timesteps selected by the
177
- scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
178
- "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
179
- Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
180
- guidance_scale (`float`, *optional*, defaults to 5.0):
181
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
182
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
183
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
184
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
185
- usually at the expense of lower image quality.
186
- negative_prompt (`str` or `List[str]`, *optional*):
187
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
188
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
189
- less than `1`).
190
- negative_prompt_2 (`str` or `List[str]`, *optional*):
191
- The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
192
- `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
193
- num_images_per_prompt (`int`, *optional*, defaults to 1):
194
- The number of images to generate per prompt.
195
- eta (`float`, *optional*, defaults to 0.0):
196
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
197
- [`schedulers.DDIMScheduler`], will be ignored for others.
198
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
199
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
200
- to make generation deterministic.
201
- latents (`torch.FloatTensor`, *optional*):
202
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
203
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
204
- tensor will ge generated by sampling using the supplied random `generator`.
205
- prompt_embeds (`torch.FloatTensor`, *optional*):
206
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
207
- provided, text embeddings will be generated from `prompt` input argument.
208
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
209
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
210
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
211
- argument.
212
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
213
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
214
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
215
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
216
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
217
- weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
218
- input argument.
219
- ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
220
- output_type (`str`, *optional*, defaults to `"pil"`):
221
- The output format of the generate image. Choose between
222
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
223
- return_dict (`bool`, *optional*, defaults to `True`):
224
- Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
225
- of a plain tuple.
226
- cross_attention_kwargs (`dict`, *optional*):
227
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
228
- `self.processor` in
229
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
230
- guidance_rescale (`float`, *optional*, defaults to 0.0):
231
- Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
232
- Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
233
- [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
234
- Guidance rescale factor should fix overexposure when using zero terminal SNR.
235
- original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
236
- If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
237
- `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
238
- explained in section 2.2 of
239
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
240
- crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
241
- `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
242
- `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
243
- `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
244
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
245
- target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
246
- For most cases, `target_size` should be set to the desired height and width of the generated image. If
247
- not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
248
- section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
249
- negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
250
- To negatively condition the generation process based on a specific image resolution. Part of SDXL's
251
- micro-conditioning as explained in section 2.2 of
252
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
253
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
254
- negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
255
- To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
256
- micro-conditioning as explained in section 2.2 of
257
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
258
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
259
- negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
260
- To negatively condition the generation process based on a target image resolution. It should be as same
261
- as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
262
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
263
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
264
- callback_on_step_end (`Callable`, *optional*):
265
- A function that calls at the end of each denoising steps during the inference. The function is called
266
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
267
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
268
- `callback_on_step_end_tensor_inputs`.
269
- callback_on_step_end_tensor_inputs (`List`, *optional*):
270
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
271
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
272
- `._callback_tensor_inputs` attribute of your pipeline class.
273
-
274
- Examples:
275
-
276
- Returns:
277
- [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
278
- [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
279
- `tuple`. When returning a tuple, the first element is a list with the generated images.
280
- """
281
-
282
- callback = kwargs.pop("callback", None)
283
- callback_steps = kwargs.pop("callback_steps", None)
284
-
285
- if callback is not None:
286
- deprecate(
287
- "callback",
288
- "1.0.0",
289
- "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
290
- )
291
- if callback_steps is not None:
292
- deprecate(
293
- "callback_steps",
294
- "1.0.0",
295
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
296
- )
297
-
298
- # 0. Default height and width to unet
299
- height = height or self.default_sample_size * self.vae_scale_factor
300
- width = width or self.default_sample_size * self.vae_scale_factor
301
-
302
- original_size = original_size or (height, width)
303
- target_size = target_size or (height, width)
304
-
305
- # 1. Check inputs. Raise error if not correct
306
- self.check_inputs(
307
- prompt,
308
- prompt_2,
309
- height,
310
- width,
311
- callback_steps,
312
- negative_prompt,
313
- negative_prompt_2,
314
- prompt_embeds,
315
- negative_prompt_embeds,
316
- pooled_prompt_embeds,
317
- negative_pooled_prompt_embeds,
318
- callback_on_step_end_tensor_inputs,
319
- )
320
-
321
- self._guidance_scale = guidance_scale
322
- self._guidance_rescale = guidance_rescale
323
- self._clip_skip = clip_skip
324
- self._cross_attention_kwargs = cross_attention_kwargs
325
- self._denoising_end = denoising_end
326
- self._interrupt = False
327
-
328
- # 2. Define call parameters
329
- if prompt is not None and isinstance(prompt, str):
330
- batch_size = 1
331
- elif prompt is not None and isinstance(prompt, list):
332
- batch_size = len(prompt)
333
- else:
334
- batch_size = prompt_embeds.shape[0]
335
-
336
- device = self._execution_device
337
-
338
- # 3. Encode input prompt
339
- lora_scale = (
340
- self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
341
- )
342
-
343
- (
344
- prompt_embeds,
345
- negative_prompt_embeds,
346
- pooled_prompt_embeds,
347
- negative_pooled_prompt_embeds,
348
- ) = self.encode_prompt(
349
- prompt=prompt,
350
- prompt_2=prompt_2,
351
- device=device,
352
- num_images_per_prompt=num_images_per_prompt,
353
- do_classifier_free_guidance=self.do_classifier_free_guidance,
354
- negative_prompt=negative_prompt,
355
- negative_prompt_2=negative_prompt_2,
356
- prompt_embeds=prompt_embeds,
357
- negative_prompt_embeds=negative_prompt_embeds,
358
- pooled_prompt_embeds=pooled_prompt_embeds,
359
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
360
- lora_scale=lora_scale,
361
- clip_skip=self.clip_skip,
362
- )
363
-
364
- # 4. Prepare timesteps
365
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
366
-
367
- # 5. Prepare latent variables
368
- num_channels_latents = self.unet.config.in_channels
369
- latents = self.prepare_latents(
370
- batch_size * num_images_per_prompt,
371
- num_channels_latents,
372
- height,
373
- width,
374
- prompt_embeds.dtype,
375
- device,
376
- generator,
377
- latents,
378
- )
379
-
380
- # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
381
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
382
-
383
- # 7. Prepare added time ids & embeddings
384
- add_text_embeds = pooled_prompt_embeds
385
- if self.text_encoder_2 is None:
386
- text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
387
- else:
388
- text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
389
-
390
- add_time_ids = self._get_add_time_ids(
391
- original_size,
392
- crops_coords_top_left,
393
- target_size,
394
- dtype=prompt_embeds.dtype,
395
- text_encoder_projection_dim=text_encoder_projection_dim,
396
- )
397
- if negative_original_size is not None and negative_target_size is not None:
398
- negative_add_time_ids = self._get_add_time_ids(
399
- negative_original_size,
400
- negative_crops_coords_top_left,
401
- negative_target_size,
402
- dtype=prompt_embeds.dtype,
403
- text_encoder_projection_dim=text_encoder_projection_dim,
404
- )
405
- else:
406
- negative_add_time_ids = add_time_ids
407
-
408
- if self.do_classifier_free_guidance:
409
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
410
- add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
411
- add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
412
-
413
- prompt_embeds = prompt_embeds.to(device)
414
- add_text_embeds = add_text_embeds.to(device)
415
- add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
416
-
417
- if ip_adapter_emb is not None:
418
- image_embeds = ip_adapter_emb
419
-
420
- elif ip_adapter_image is not None:
421
- output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
422
- image_embeds, negative_image_embeds = self.encode_image(
423
- ip_adapter_image, device, num_images_per_prompt, output_hidden_state
424
- )
425
- if self.do_classifier_free_guidance:
426
- image_embeds = torch.cat([negative_image_embeds, image_embeds])
427
-
428
- # 8. Denoising loop
429
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
430
-
431
- # 8.1 Apply denoising_end
432
- if (
433
- self.denoising_end is not None
434
- and isinstance(self.denoising_end, float)
435
- and self.denoising_end > 0
436
- and self.denoising_end < 1
437
- ):
438
- discrete_timestep_cutoff = int(
439
- round(
440
- self.scheduler.config.num_train_timesteps
441
- - (self.denoising_end * self.scheduler.config.num_train_timesteps)
442
- )
443
- )
444
- num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
445
- timesteps = timesteps[:num_inference_steps]
446
-
447
- # 9. Optionally get Guidance Scale Embedding
448
- timestep_cond = None
449
- if self.unet.config.time_cond_proj_dim is not None:
450
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
451
- timestep_cond = self.get_guidance_scale_embedding(
452
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
453
- ).to(device=device, dtype=latents.dtype)
454
-
455
- self._num_timesteps = len(timesteps)
456
- with self.progress_bar(total=num_inference_steps) as progress_bar:
457
- for i, t in enumerate(timesteps):
458
- if self.interrupt:
459
- continue
460
-
461
- # expand the latents if we are doing classifier free guidance
462
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
463
-
464
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
465
-
466
- # predict the noise residual
467
- added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
468
- if ip_adapter_image is not None or ip_adapter_emb is not None:
469
- added_cond_kwargs["image_embeds"] = image_embeds
470
- noise_pred = self.unet(
471
- latent_model_input,
472
- t,
473
- encoder_hidden_states=prompt_embeds,
474
- timestep_cond=timestep_cond,
475
- cross_attention_kwargs=self.cross_attention_kwargs,
476
- added_cond_kwargs=added_cond_kwargs,
477
- return_dict=False,
478
- )[0]
479
-
480
- # perform guidance
481
- if self.do_classifier_free_guidance:
482
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
483
- noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
484
-
485
- if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
486
- # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
487
- noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
488
-
489
- # compute the previous noisy sample x_t -> x_t-1
490
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
491
-
492
- if callback_on_step_end is not None:
493
- callback_kwargs = {}
494
- for k in callback_on_step_end_tensor_inputs:
495
- callback_kwargs[k] = locals()[k]
496
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
497
-
498
- latents = callback_outputs.pop("latents", latents)
499
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
500
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
501
- add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
502
- negative_pooled_prompt_embeds = callback_outputs.pop(
503
- "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
504
- )
505
- add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
506
- negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
507
-
508
- # call the callback, if provided
509
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
510
- progress_bar.update()
511
- if callback is not None and i % callback_steps == 0:
512
- step_idx = i // getattr(self.scheduler, "order", 1)
513
- callback(step_idx, t, latents)
514
-
515
- # if XLA_AVAILABLE:
516
- # xm.mark_step()
517
-
518
- if not output_type == "latent":
519
- # make sure the VAE is in float32 mode, as it overflows in float16
520
- needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
521
-
522
- if needs_upcasting:
523
- self.upcast_vae()
524
- latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
525
-
526
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
527
-
528
- # cast back to fp16 if needed
529
- if needs_upcasting:
530
- self.vae.to(dtype=torch.float16)
531
- else:
532
- image = latents
533
-
534
- if not output_type == "latent":
535
- # apply watermark if available
536
- if self.watermark is not None:
537
- image = self.watermark.apply_watermark(image)
538
-
539
- image = self.image_processor.postprocess(image, output_type=output_type)
540
-
541
- # Offload all models
542
- self.maybe_free_model_hooks()
543
-
544
- if not return_dict:
545
- return (image,)
546
-
547
- return StableDiffusionXLPipelineOutput(images=image)