Spaces:
Running
on
A10G
Running
on
A10G
rynmurdock
commited on
Commit
•
e060f2d
1
Parent(s):
f824106
svc instead of linearsvc -- may be much better
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ DEVICE = 'cuda'
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
-
from sklearn.svm import
|
6 |
from sklearn import preprocessing
|
7 |
import pandas as pd
|
8 |
|
@@ -55,6 +55,7 @@ pipe.to(device=DEVICE)
|
|
55 |
|
56 |
@spaces.GPU
|
57 |
def compile_em():
|
|
|
58 |
pipe.unet = torch.compile(pipe.unet, mode='reduce-overhead')
|
59 |
pipe.vae = torch.compile(pipe.vae, mode='reduce-overhead')
|
60 |
autoencoder.model.forward = torch.compile(autoencoder.model.forward, backend='inductor', dynamic=True)
|
@@ -195,11 +196,11 @@ def get_coeff(embs_local, ys):
|
|
195 |
feature_embs = scaler.transform(feature_embs)
|
196 |
print(len(feature_embs), len(ys))
|
197 |
|
198 |
-
lin_class =
|
199 |
-
|
200 |
-
|
201 |
|
202 |
-
return
|
203 |
|
204 |
# TODO add to state instead of shared across all
|
205 |
glob_idx = 0
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
from sklearn.svm import SVC
|
6 |
from sklearn import preprocessing
|
7 |
import pandas as pd
|
8 |
|
|
|
55 |
|
56 |
@spaces.GPU
|
57 |
def compile_em():
|
58 |
+
return None# TODO add back
|
59 |
pipe.unet = torch.compile(pipe.unet, mode='reduce-overhead')
|
60 |
pipe.vae = torch.compile(pipe.vae, mode='reduce-overhead')
|
61 |
autoencoder.model.forward = torch.compile(autoencoder.model.forward, backend='inductor', dynamic=True)
|
|
|
196 |
feature_embs = scaler.transform(feature_embs)
|
197 |
print(len(feature_embs), len(ys))
|
198 |
|
199 |
+
lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=.1).fit(feature_embs, np.array([ys[i] for i in indices]))
|
200 |
+
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
|
201 |
+
coef_ = (coef_.flatten() / (coef_.flatten().norm())).unsqueeze(0)
|
202 |
|
203 |
+
return coef_
|
204 |
|
205 |
# TODO add to state instead of shared across all
|
206 |
glob_idx = 0
|