Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,225 +1,278 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import
|
3 |
-
import os
|
4 |
-
import shutil
|
5 |
-
import
|
6 |
-
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
self
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
#
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import polars as pl
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import numpy as np
|
6 |
+
from PyQt6.QtWidgets import QApplication
|
7 |
+
from PyQt6 import QtCore
|
8 |
+
import pyqtgraph as pg
|
9 |
+
from pyqtgraph.exporters import ImageExporter
|
10 |
+
|
11 |
+
class DataProcessor:
|
12 |
+
def __init__(self, bodypart_names, x_max, y_max):
|
13 |
+
# 余分な空白を除去してリスト化
|
14 |
+
self.bodypart_names = [name.strip() for name in bodypart_names.split(',')]
|
15 |
+
self.x_max = x_max
|
16 |
+
self.y_max = y_max
|
17 |
+
self.output_folder = 'output_plots'
|
18 |
+
if not os.path.exists(self.output_folder):
|
19 |
+
os.makedirs(self.output_folder)
|
20 |
+
|
21 |
+
def process_csv(self, file_path):
|
22 |
+
# CSVをpolarsで読み込み(ヘッダーはなし)
|
23 |
+
df_raw = pl.read_csv(file_path, has_header=False)
|
24 |
+
# 2行分のヘッダー(インデックス1,2)を取得し、最初の列は除外する
|
25 |
+
header1 = df_raw.row(1)[1:]
|
26 |
+
header2 = df_raw.row(2)[1:]
|
27 |
+
new_columns = [f"{h1}|{h2}" for h1, h2 in zip(header1, header2)]
|
28 |
+
# データ部分はインデックス3以降(0-indexed)とし、先頭列を削除
|
29 |
+
df_data = df_raw.slice(3)
|
30 |
+
first_col = df_data.columns[0]
|
31 |
+
df_data = df_data.drop(first_col)
|
32 |
+
df_data.columns = new_columns
|
33 |
+
|
34 |
+
# likelihood列のみ抽出
|
35 |
+
df_likelihood = self.extract_likelihood(df_data)
|
36 |
+
# likelihood列を除去したデータ
|
37 |
+
df_no_likelihood = self.remove_likelihood(df_data)
|
38 |
+
# 付属肢名の置換(左側の名前を mapping で変更)
|
39 |
+
df_renamed = self.rename_bodyparts(df_no_likelihood)
|
40 |
+
return df_renamed, df_likelihood
|
41 |
+
|
42 |
+
def remove_likelihood(self, df):
|
43 |
+
# 列名が "bodypart|likelihood" となっている列を除外
|
44 |
+
new_cols = [col for col in df.columns if col.split("|")[1] != "likelihood"]
|
45 |
+
return df.select(new_cols)
|
46 |
+
|
47 |
+
def rename_bodyparts(self, df):
|
48 |
+
cols = df.columns
|
49 |
+
current_names = []
|
50 |
+
for col in cols:
|
51 |
+
bp = col.split("|")[0]
|
52 |
+
if bp not in current_names:
|
53 |
+
current_names.append(bp)
|
54 |
+
if len(self.bodypart_names) != len(current_names):
|
55 |
+
raise ValueError("The length of bodypart_names must be equal to the number of bodyparts.")
|
56 |
+
mapping = dict(zip(current_names, self.bodypart_names))
|
57 |
+
new_cols = {col: f"{mapping[col.split('|')[0]]}|{col.split('|')[1]}" for col in cols}
|
58 |
+
return df.rename(new_cols)
|
59 |
+
|
60 |
+
def extract_likelihood(self, df):
|
61 |
+
# likelihood列のみを抽出
|
62 |
+
likelihood_cols = [col for col in df.columns if col.split("|")[1] == "likelihood"]
|
63 |
+
df_likelihood = df.select(likelihood_cols)
|
64 |
+
current_names = []
|
65 |
+
for col in likelihood_cols:
|
66 |
+
bp = col.split("|")[0]
|
67 |
+
if bp not in current_names:
|
68 |
+
current_names.append(bp)
|
69 |
+
if len(self.bodypart_names) != len(current_names):
|
70 |
+
raise ValueError("The length of bodypart_names must be equal to the number of bodyparts.")
|
71 |
+
mapping = dict(zip(current_names, self.bodypart_names))
|
72 |
+
new_cols = {col: f"{mapping[col.split('|')[0]]}|{col.split('|')[1]}" for col in likelihood_cols}
|
73 |
+
return df_likelihood.rename(new_cols)
|
74 |
+
|
75 |
+
def get_bodyparts(self, df):
|
76 |
+
bodyparts = []
|
77 |
+
for col in df.columns:
|
78 |
+
bp = col.split("|")[0]
|
79 |
+
if bp not in bodyparts:
|
80 |
+
bodyparts.append(bp)
|
81 |
+
return bodyparts
|
82 |
+
|
83 |
+
def plot_scatter(self, df):
|
84 |
+
image_paths = []
|
85 |
+
bodyparts = self.get_bodyparts(df)
|
86 |
+
app = QApplication.instance()
|
87 |
+
if app is None:
|
88 |
+
app = QApplication([])
|
89 |
+
|
90 |
+
# 個別の散布図を作成
|
91 |
+
for i, bodypart in enumerate(bodyparts):
|
92 |
+
try:
|
93 |
+
x = np.array(df[f"{bodypart}|x"].to_list(), dtype=float)
|
94 |
+
y = np.array(df[f"{bodypart}|y"].to_list(), dtype=float)
|
95 |
+
except Exception as e:
|
96 |
+
continue
|
97 |
+
pw = pg.PlotWidget(title=f'トラッキングの座標({bodypart})')
|
98 |
+
pw.setLabel('bottom', 'X Coordinate(pixel)')
|
99 |
+
pw.setLabel('left', 'Y Coordinate(pixel)')
|
100 |
+
pw.setXRange(0, self.x_max)
|
101 |
+
pw.setYRange(0, self.y_max)
|
102 |
+
pw.invertY(True)
|
103 |
+
color = pg.intColor(i, len(bodyparts))
|
104 |
+
# 散布図アイテムの追加
|
105 |
+
scatter = pg.ScatterPlotItem(x=x, y=y, pen=pg.mkPen(color=color), symbol='o', brush=color)
|
106 |
+
pw.addItem(scatter)
|
107 |
+
# 始点を黒丸でハイライトし、"Start"テキストを追加
|
108 |
+
if len(x) > 0:
|
109 |
+
scatter_start = pg.ScatterPlotItem(x=[x[0]], y=[y[0]], pen=pg.mkPen(color='k'), symbol='o', size=10, brush='k')
|
110 |
+
pw.addItem(scatter_start)
|
111 |
+
text = pg.TextItem("Start", color='k')
|
112 |
+
text.setPos(x[0], y[0])
|
113 |
+
pw.addItem(text)
|
114 |
+
# PNGにエクスポート
|
115 |
+
exporter = ImageExporter(pw.plotItem)
|
116 |
+
filename = os.path.join(self.output_folder, f"{bodypart}.png")
|
117 |
+
exporter.export(filename)
|
118 |
+
image_paths.append(filename)
|
119 |
+
|
120 |
+
# 全付属肢の散布図を作成
|
121 |
+
pw_all = pg.PlotWidget(title='トラッキングの座標(全付属肢)')
|
122 |
+
pw_all.setLabel('bottom', 'X Coordinate(pixel)')
|
123 |
+
pw_all.setLabel('left', 'Y Coordinate(pixel)')
|
124 |
+
pw_all.setXRange(0, self.x_max)
|
125 |
+
pw_all.setYRange(0, self.y_max)
|
126 |
+
pw_all.invertY(True)
|
127 |
+
for i, bodypart in enumerate(bodyparts):
|
128 |
+
try:
|
129 |
+
x = np.array(df[f"{bodypart}|x"].to_list(), dtype=float)
|
130 |
+
y = np.array(df[f"{bodypart}|y"].to_list(), dtype=float)
|
131 |
+
except Exception as e:
|
132 |
+
continue
|
133 |
+
color = pg.intColor(i, len(bodyparts))
|
134 |
+
scatter = pg.ScatterPlotItem(x=x, y=y, pen=pg.mkPen(color=color), symbol='o', brush=color)
|
135 |
+
pw_all.addItem(scatter)
|
136 |
+
exporter_all = ImageExporter(pw_all.plotItem)
|
137 |
+
filename_all = os.path.join(self.output_folder, "all_plot.png")
|
138 |
+
exporter_all.export(filename_all)
|
139 |
+
image_paths.append(filename_all)
|
140 |
+
return image_paths
|
141 |
+
|
142 |
+
def plot_trajectories(self, df):
|
143 |
+
image_paths = []
|
144 |
+
bodyparts = self.get_bodyparts(df)
|
145 |
+
app = QApplication.instance()
|
146 |
+
if app is None:
|
147 |
+
app = QApplication([])
|
148 |
+
|
149 |
+
# 個別の軌跡図を作成
|
150 |
+
for i, bodypart in enumerate(bodyparts):
|
151 |
+
try:
|
152 |
+
x = np.array(df[f"{bodypart}|x"].to_list(), dtype=float)
|
153 |
+
y = np.array(df[f"{bodypart}|y"].to_list(), dtype=float)
|
154 |
+
except Exception as e:
|
155 |
+
continue
|
156 |
+
pw = pg.PlotWidget(title=f'トラッキングの座標({bodypart})')
|
157 |
+
pw.setLabel('bottom', 'Frames')
|
158 |
+
pw.setLabel('left', 'Coordinate(pixel)')
|
159 |
+
pen_x = pg.mkPen(color=pg.intColor(i, len(bodyparts)), style=QtCore.Qt.PenStyle.DashLine)
|
160 |
+
pen_y = pg.mkPen(color=pg.intColor(i, len(bodyparts)))
|
161 |
+
pw.plot(x, pen=pen_x, name=f"{bodypart}(x座標)")
|
162 |
+
pw.plot(y, pen=pen_y, name=f"{bodypart}(y座標)")
|
163 |
+
exporter = ImageExporter(pw.plotItem)
|
164 |
+
filename = os.path.join(self.output_folder, f"{bodypart}_trajectories.png")
|
165 |
+
exporter.export(filename)
|
166 |
+
image_paths.append(filename)
|
167 |
+
|
168 |
+
# 全付属肢の軌跡図を作成
|
169 |
+
pw_all = pg.PlotWidget(title='トラッキングの座標(全付属肢)')
|
170 |
+
pw_all.setLabel('bottom', 'Frames')
|
171 |
+
pw_all.setLabel('left', 'Coordinate(pixel)')
|
172 |
+
for i, bodypart in enumerate(bodyparts):
|
173 |
+
try:
|
174 |
+
x = np.array(df[f"{bodypart}|x"].to_list(), dtype=float)
|
175 |
+
y = np.array(df[f"{bodypart}|y"].to_list(), dtype=float)
|
176 |
+
except Exception as e:
|
177 |
+
continue
|
178 |
+
pen_x = pg.mkPen(color=pg.intColor(i, len(bodyparts)), style=QtCore.Qt.PenStyle.DashLine)
|
179 |
+
pen_y = pg.mkPen(color=pg.intColor(i, len(bodyparts)))
|
180 |
+
pw_all.plot(x, pen=pen_x, name=f"{bodypart}(x座標)")
|
181 |
+
pw_all.plot(y, pen=pen_y, name=f"{bodypart}(y座標)")
|
182 |
+
exporter_all = ImageExporter(pw_all.plotItem)
|
183 |
+
filename_all = os.path.join(self.output_folder, "all_trajectories.png")
|
184 |
+
exporter_all.export(filename_all)
|
185 |
+
image_paths.append(filename_all)
|
186 |
+
return image_paths
|
187 |
+
|
188 |
+
def plot_likelihood(self, df_likelihood):
|
189 |
+
image_paths = []
|
190 |
+
bodyparts = self.get_bodyparts(df_likelihood)
|
191 |
+
app = QApplication.instance()
|
192 |
+
if app is None:
|
193 |
+
app = QApplication([])
|
194 |
+
|
195 |
+
# 付属肢ごとの尤度グラフを作成
|
196 |
+
for i, bodypart in enumerate(bodyparts):
|
197 |
+
try:
|
198 |
+
likelihood = np.array(df_likelihood[f"{bodypart}|likelihood"].to_list(), dtype=float)
|
199 |
+
except Exception as e:
|
200 |
+
continue
|
201 |
+
pw = pg.PlotWidget(title=f'フレーム別の尤度 ({bodypart})')
|
202 |
+
pw.setLabel('bottom', 'Frames')
|
203 |
+
pw.setLabel('left', '尤度')
|
204 |
+
pw.setYRange(0, 1.0)
|
205 |
+
color = pg.intColor(i, len(bodyparts))
|
206 |
+
pw.plot(likelihood, pen=pg.mkPen(color=color), name=bodypart)
|
207 |
+
exporter = ImageExporter(pw.plotItem)
|
208 |
+
filename = os.path.join(self.output_folder, f"{bodypart}_likelihood.png")
|
209 |
+
exporter.export(filename)
|
210 |
+
image_paths.append(filename)
|
211 |
+
|
212 |
+
# 全付属肢の尤度グラフを作成
|
213 |
+
pw_all = pg.PlotWidget(title='フレーム別の尤度 (全付属肢)')
|
214 |
+
pw_all.setLabel('bottom', 'Frames')
|
215 |
+
pw_all.setLabel('left', '尤度')
|
216 |
+
pw_all.setYRange(0, 1.0)
|
217 |
+
for i, bodypart in enumerate(bodyparts):
|
218 |
+
try:
|
219 |
+
likelihood = np.array(df_likelihood[f"{bodypart}|likelihood"].to_list(), dtype=float)
|
220 |
+
except Exception as e:
|
221 |
+
continue
|
222 |
+
color = pg.intColor(i, len(bodyparts))
|
223 |
+
pw_all.plot(likelihood, pen=pg.mkPen(color=color), name=bodypart)
|
224 |
+
exporter_all = ImageExporter(pw_all.plotItem)
|
225 |
+
filename_all = os.path.join(self.output_folder, "likelihood_plot.png")
|
226 |
+
exporter_all.export(filename_all)
|
227 |
+
image_paths.append(filename_all)
|
228 |
+
return image_paths
|
229 |
+
|
230 |
+
class GradioInterface:
|
231 |
+
def __init__(self):
|
232 |
+
self.interface = gr.Interface(
|
233 |
+
fn=self.process_and_plot,
|
234 |
+
inputs=[
|
235 |
+
gr.File(label="CSVファイルをドラッグ&ドロップ"),
|
236 |
+
gr.Textbox(
|
237 |
+
label="付属肢の名前(カンマ区切り)",
|
238 |
+
value="指節1, 指節2, 指節3, 指節4, 指節5, 指節6, 指節7, 指節8, 指節9, 指節10, 指節11, 指節12, 指節13, 指節14, 触角(左), 触角(右), 頭部, 腹尾節"
|
239 |
+
),
|
240 |
+
gr.Number(label="X軸の最大値", value=1920),
|
241 |
+
gr.Number(label="Y軸の最大値", value=1080),
|
242 |
+
gr.CheckboxGroup(
|
243 |
+
label="プロットするグラフを選択",
|
244 |
+
choices=["散布図", "軌跡図", "尤度グラフ"],
|
245 |
+
value=["散布図", "軌跡図", "尤度グラフ"],
|
246 |
+
type="value"
|
247 |
+
)
|
248 |
+
],
|
249 |
+
outputs=[
|
250 |
+
gr.Gallery(label="散布図"),
|
251 |
+
gr.File(label="ZIPダウンロード")
|
252 |
+
],
|
253 |
+
title="DeepLabCutグラフ出力ツール",
|
254 |
+
description="CSVファイルからグラフを作成します。"
|
255 |
+
)
|
256 |
+
|
257 |
+
def process_and_plot(self, file, bodypart_names, x_max, y_max, graph_choices):
|
258 |
+
processor = DataProcessor(bodypart_names, x_max, y_max)
|
259 |
+
df, df_likelihood = processor.process_csv(file.name)
|
260 |
+
|
261 |
+
all_image_paths = []
|
262 |
+
if "散布図" in graph_choices:
|
263 |
+
all_image_paths += processor.plot_scatter(df)
|
264 |
+
if "軌跡図" in graph_choices:
|
265 |
+
all_image_paths += processor.plot_trajectories(df)
|
266 |
+
if "尤度グラフ" in graph_choices:
|
267 |
+
all_image_paths += processor.plot_likelihood(df_likelihood)
|
268 |
+
|
269 |
+
shutil.make_archive(processor.output_folder, 'zip', processor.output_folder)
|
270 |
+
return all_image_paths, processor.output_folder + '.zip'
|
271 |
+
|
272 |
+
def launch(self):
|
273 |
+
self.interface.launch()
|
274 |
+
|
275 |
+
|
276 |
+
if __name__ == "__main__":
|
277 |
+
gradio_app = GradioInterface()
|
278 |
+
gradio_app.launch()
|