File size: 1,665 Bytes
82fdb01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dc7452
 
82fdb01
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/env python
# coding: utf-8
import torch
from torch import nn


class CNN(nn.Module):
    def __init__(self, input_channels, num_classes):
        super().__init__()

        self.feature_layers = [input_channels, 6, 16]
        self.kernels = [5, 5]
        self.pools = [2, 2]
        self.feature_activations = [nn.ReLU for _ in range(len(self.feature_layers) - 1)]

        self.classifier_layers = [400, 120, 84, num_classes]
        self.classifier_activations = [nn.ReLU for _ in range(len(self.classifier_layers) - 1)]

        feature_layers = []
        for idx, layer in enumerate(list(zip(self.feature_layers[:-1], self.feature_layers[1:]))):
            feature_layers.append(
                nn.Conv2d(in_channels=layer[0], out_channels=layer[1],
                          kernel_size=self.kernels[idx], padding=2 if idx == 0 else 0)
            )
            feature_layers.append(self.feature_activations[idx]())
            feature_layers.append(nn.MaxPool2d(kernel_size=self.pools[idx]))

        classifier_layers = []
        for idx, layer in enumerate(list(zip(self.classifier_layers[:-1], self.classifier_layers[1:]))):
            classifier_layers.append(
                nn.Linear(in_features=layer[0], out_features=layer[1])
            )
            if idx < len(self.classifier_activations) - 1:
                classifier_layers.append(self.classifier_activations[idx]())

        self.feature_extractor = nn.Sequential(*feature_layers)
        self.classifier = nn.Sequential(*classifier_layers)

    def forward(self, x):
        x = self.feature_extractor(x)
        y = self.classifier(torch.flatten(x))
        return y