lenet_mnist / src /dataset.py
rzimmerdev's picture
Finished MNIST downloading and caching modules
6ec3bf6
raw
history blame
1.67 kB
#!/usr/bin/env python
# coding: utf-8
import gzip
from src.downloader import download_dataset
import numpy as np
from torch.utils.data import Dataset
def load_mnist(download_dir):
download_dataset("mnist", download_dir)
return {"train": (download_dir + "train_images", download_dir + "train_labels"),
"test": (download_dir + "test_images", download_dir + "test_labels")}
class DatasetMNIST(Dataset):
def __init__(self, images, labels):
with gzip.open(images, 'r') as f:
f.read(4)
self.total = int.from_bytes(f.read(4), 'big')
rows = int.from_bytes(f.read(4), 'big')
columns = int.from_bytes(f.read(4), 'big')
image_data = f.read()
images = np.frombuffer(image_data, dtype=np.uint8).reshape((self.total, rows, columns))
self.images = images
with gzip.open(labels, 'r') as f:
f.read(8)
label_data = f.read()
labels = np.frombuffer(label_data, dtype=np.uint8)
self.labels = labels
self.data = list(zip(self.images, self.labels))
def __getitem__(self, n):
if n > self.total:
raise ValueError(f"Dataset doesn't have enough elements to suffice request of {n} elements.")
return self.data[n]
def __len__(self):
return len(self.data)
if __name__ == "__main__":
download_dir = "../downloads/mnist/"
mnist = load_mnist(download_dir)
dataset = DatasetMNIST(*mnist["train"])
import matplotlib.pyplot as plt
X, y = dataset[4]
plt.imshow(X, cmap="gray")
plt.title(label="Annotated label: " + str(y))
plt.show()