Spaces:
Running
Running
#!/usr/bin/env python | |
# coding: utf-8 | |
import gzip | |
import torch | |
from torch.utils.data import Dataset | |
import numpy as np | |
from src.downloader import download_dataset | |
def load_mnist(download_dir): | |
download_dataset("mnist", download_dir) | |
return {"train": (download_dir + "train_images", download_dir + "train_labels"), | |
"test": (download_dir + "test_images", download_dir + "test_labels")} | |
class DatasetMNIST(Dataset): | |
def __init__(self, images, labels): | |
with gzip.open(images, 'r') as f: | |
f.read(4) | |
self.total = int.from_bytes(f.read(4), 'big') | |
rows = int.from_bytes(f.read(4), 'big') | |
columns = int.from_bytes(f.read(4), 'big') | |
image_data = f.read() | |
images = np.frombuffer(image_data, dtype=np.uint8).reshape((self.total, rows, columns)) | |
self.images = images | |
with gzip.open(labels, 'r') as f: | |
f.read(8) | |
label_data = f.read() | |
labels = np.frombuffer(label_data, dtype=np.uint8) | |
self.labels = labels | |
self.data = list(zip(self.images, self.labels)) | |
def __getitem__(self, n): | |
if n > self.total: | |
raise ValueError(f"Dataset doesn't have enough elements to suffice request of {n} elements.") | |
return torch.tensor(self.data[n][0].reshape(1, 28, 28), dtype=torch.float32), torch.tensor(self.data[n][1]) | |
def __len__(self): | |
return len(self.data) | |
if __name__ == "__main__": | |
download_dir = "../downloads/mnist/" | |
mnist = load_mnist(download_dir) | |
dataset = DatasetMNIST(*mnist["train"]) | |
import matplotlib.pyplot as plt | |
X, y = dataset[4] | |
plt.imshow(X, cmap="gray") | |
plt.title(label="Annotated label: " + str(y)) | |
plt.show() | |