rzimmerdev commited on
Commit
581a1b0
2 Parent(s): 84a1bb0 b809635

Merge remote-tracking branch 'origin/main'

Browse files
Files changed (1) hide show
  1. README.md +10 -3
README.md CHANGED
@@ -9,12 +9,19 @@ Create and deploy to production a simple neural network for Computer Vision
9
  * Gradio for interactive user-experience platform within an online platform (Data-ICMC Website).
10
 
11
 
12
- # Datasets to consider
13
  * [LabelMe 12 50k](https://www.kaggle.com/datasets/dschettler8845/labelme-12-50k)
14
  * [City-Scapes](https://www.cityscapes-dataset.com/dataset-overview/)
15
  * [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)
16
 
17
 
18
- # References
19
  * [DSNet-Fast](https://www.researchgate.net/figure/The-architecture-of-fast-dense-segmentation-network-DSNet-fast-The-encoder-is_fig1_347180093)
20
- * [DSNet](https://www.researchgate.net/figure/The-architecture-of-dense-segmentation-network-DSNet-The-encoder-is-a-fully-convolutional_fig1_347180092)
 
 
 
 
 
 
 
 
9
  * Gradio for interactive user-experience platform within an online platform (Data-ICMC Website).
10
 
11
 
12
+ ## Datasets to consider
13
  * [LabelMe 12 50k](https://www.kaggle.com/datasets/dschettler8845/labelme-12-50k)
14
  * [City-Scapes](https://www.cityscapes-dataset.com/dataset-overview/)
15
  * [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/)
16
 
17
 
18
+ ## References
19
  * [DSNet-Fast](https://www.researchgate.net/figure/The-architecture-of-fast-dense-segmentation-network-DSNet-fast-The-encoder-is_fig1_347180093)
20
+ * [DSNet](https://www.researchgate.net/figure/The-architecture-of-dense-segmentation-network-DSNet-The-encoder-is-a-fully-convolutional_fig1_347180092)
21
+
22
+
23
+ # First Model
24
+ The first model available and deployed considers a simple 2D image, taken from the MNIST Dataset. Reefer to [_High-Performance Neural Networks
25
+ for Visual Object Classification_](https://arxiv.org/pdf/1102.0183.pdf) for further details on the dataset.
26
+
27
+ The CI/CD process will use the default Github pipeline using the available [Github Actions features](https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/). The training process will use the MLFLow framework, to cather and track the necessary metrics and log accordingly. Reefer to the [docs](https://mlflow.org/docs/latest/quickstart.html) for further details.