{ "cells": [ { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": true, "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from jax import numpy as jnp\n", "from jax import jit, vmap" ] }, { "cell_type": "code", "execution_count": 22, "outputs": [], "source": [ "@jit\n", "def sigmoid(x):\n", " return 1 / (1 + jnp.exp(-1 * x))" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 75, "outputs": [], "source": [ "@jit\n", "def relu(x):\n", " return x * (x > 0)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 98, "outputs": [], "source": [ "@jit\n", "@vmap\n", "def softmax(x):\n", " \"\"\"\n", " >>> jnp.sum(softmax(jnp.array([[1, 2, 4], [1, 2, 3], [1, 2, 3]])), axis=1)\n", " DeviceArray([1., 1., 1.], dtype=float32)\n", " \"\"\"\n", " return jnp.exp(x) / jnp.sum(jnp.exp(x))" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }