#!/usr/bin/env python # coding: utf-8 import gzip from src.downloader import download_dataset import numpy as np from torch.utils.data import Dataset def load_mnist(download_dir): download_dataset("mnist", download_dir) return {"train": (download_dir + "train_images", download_dir + "train_labels"), "test": (download_dir + "test_images", download_dir + "test_labels")} class DatasetMNIST(Dataset): def __init__(self, images, labels): with gzip.open(images, 'r') as f: f.read(4) self.total = int.from_bytes(f.read(4), 'big') rows = int.from_bytes(f.read(4), 'big') columns = int.from_bytes(f.read(4), 'big') image_data = f.read() images = np.frombuffer(image_data, dtype=np.uint8).reshape((self.total, rows, columns)) self.images = images with gzip.open(labels, 'r') as f: f.read(8) label_data = f.read() labels = np.frombuffer(label_data, dtype=np.uint8) self.labels = labels self.data = list(zip(self.images, self.labels)) def __getitem__(self, n): if n > self.total: raise ValueError(f"Dataset doesn't have enough elements to suffice request of {n} elements.") return self.data[n] def __len__(self): return len(self.data) if __name__ == "__main__": download_dir = "../downloads/mnist/" mnist = load_mnist(download_dir) dataset = DatasetMNIST(*mnist["train"]) import matplotlib.pyplot as plt X, y = dataset[4] plt.imshow(X, cmap="gray") plt.title(label="Annotated label: " + str(y)) plt.show()