from torch import nn, optim from torch.utils.data import random_split import pytorch_lightning as pl from trainer import LitTrainer from models import CNN def main(): from torch.utils.data import DataLoader from src.dataset import DatasetMNIST, load_mnist mnist = load_mnist("../downloads/mnist/") dataset, test_data = DatasetMNIST(*mnist["train"]), DatasetMNIST(*mnist["test"]) train_size = round(len(dataset) * 0.8) validate_size = len(dataset) - train_size train_data, validate_data = random_split(dataset, [train_size, validate_size]) train_dataloader = DataLoader(train_data, num_workers=6) # My CPU has 8 cores validate_dataloader = DataLoader(validate_data, num_workers=2) test_dataloader = DataLoader(test_data, num_workers=8) # My CPU has 8 cores # grayscale channels = 1, mnist num_labels = 10 net = CNN(input_channels=1, num_classes=10) pl_net = LitTrainer(net, nn.CrossEntropyLoss(), optim.Adam(net.parameters())) trainer = pl.Trainer(limit_train_batches=100, max_epochs=1, default_root_dir="../checkpoints") trainer.fit(model=pl_net, train_dataloaders=train_dataloader, val_dataloaders=validate_dataloader) trainer.test(model=pl_net, dataloaders=test_dataloader) if __name__ == "__main__": main()