import torch from models import CNN from dataset import DatasetMNIST, download_mnist from train import get_dataloaders, train_net_manually, train_net_lightning def main(device): mnist = download_mnist("downloads/mnist/") dataset, test_data = DatasetMNIST(*mnist["train"]), DatasetMNIST(*mnist["test"]) train_loader, validate_loader, test_loader = get_dataloaders(dataset, test_data) # Training manually net = CNN(input_channels=1, num_classes=10).to(device) optim = torch.optim.Adam(net.parameters(), lr=1e-4) loss_fn = torch.nn.CrossEntropyLoss() max_epochs = 1 train_net_manually(net, optim, loss_fn, train_loader, validate_loader, max_epochs, device) if __name__ == "__main__": main("cpu")