saad177's picture
add user data saving
4b8158a
raw
history blame
4.36 kB
import gradio as gr
import hopsworks
import joblib
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
project = hopsworks.login(project="SonyaStern_Lab1")
fs = project.get_feature_store()
print("trying to dl model")
mr = project.get_model_registry()
model = mr.get_model("diabetes_model", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/diabetes_model.pkl")
print("Model downloaded")
diabetes_fg = fs.get_feature_group(name="diabetes_gan", version=1)
query = diabetes_fg.select_all()
# feature_view = fs.get_or_create_feature_view(name="diabetes",
feature_view = fs.get_or_create_feature_view(
name="diabetes_gan",
version=1,
description="Read from Diabetes dataset",
labels=["diabetes"],
query=query,
)
diabetes_df = pd.DataFrame(diabetes_fg.read())
with gr.Blocks() as demo:
with gr.Row():
gr.HTML(value="<h1 style='text-align: center;'>Diabetes prediction</h1>")
with gr.Row():
with gr.Column():
age_input = gr.Number(label="age")
bmi_input = gr.Slider(10, 100, label="bmi", info="Body Mass Index")
hba1c_input = gr.Slider(
3.5, 9, label="hba1c_level", info="Glycated Haemoglobin"
)
blood_glucose_input = gr.Slider(
80, 300, label="blood_glucose_level", info="Blood Glucose Level"
)
existent_info_input = gr.Radio(
["yes", "no", "Don't know"],
label="Do you already know if you have diabetes? (This will not be used for the prediction)",
)
consent_input = gr.Checkbox(
info="I consent that my personal data will be saved and potentially be used for the model training",
label="accept",
)
btn = gr.Button("Submit")
with gr.Column():
output = gr.Text(label="Model prediction")
plot = gr.Plot()
def submit_inputs(
age_input,
bmi_input,
hba1c_input,
blood_glucose_input,
existent_info_input,
consent_input,
):
df = pd.DataFrame(
[[age_input, bmi_input, hba1c_input, blood_glucose_input]],
columns=["age", "bmi", "hba1c_level", "blood_glucose_level"],
)
res = model.predict(df)
mean_for_age = diabetes_df[
(diabetes_df["diabetes"] == 0) & (diabetes_df["age"] == age_input)
].mean()
print(
"your bmi is:", bmi_input, "the mean for ur age is :", mean_for_age["bmi"]
)
categories = ["BMI", "HbA1c", "Blood Level"]
fig, ax = plt.subplots()
bar_width = 0.35
indices = np.arange(len(categories))
ax.bar(
indices,
[
mean_for_age.bmi,
mean_for_age.hba1c_level,
mean_for_age.blood_glucose_level,
],
bar_width,
label="Reference",
color="b",
alpha=0.7,
)
ax.bar(
indices + bar_width,
[bmi_input, hba1c_input, blood_glucose_input],
bar_width,
label="User",
color="r",
alpha=0.7,
)
ax.legend()
ax.set_xlabel("Variables")
ax.set_ylabel("Values")
ax.set_title("Comparison with Mean values for your age")
ax.set_xticks(indices + bar_width / 2)
ax.set_xticklabels(categories)
## save user's data in hopsworks
if consent_input == True:
user_data_fg = fs.get_or_create_feature_view(
name="user_diabetes_data",
version=1,
primary_key=["age", "bmi", "hba1c_level", "blood_glucose_level"],
description="Submitted user data",
)
user_data_df = df.copy()
user_data_df["diabetes"] = existent_info_input
user_data_fg.insert(user_data_df)
print("inserted new user data to hopsworks", user_data_df)
return res, fig
btn.click(
submit_inputs,
inputs=[
age_input,
bmi_input,
hba1c_input,
blood_glucose_input,
existent_info_input,
consent_input,
],
outputs=[output, plot],
)
demo.launch()