import gradio as gr import matplotlib.pyplot as plt import shap import hopsworks import pandas as pd import joblib # Assuming you have your model and data defined elsewhere project = hopsworks.login( project="SonyaStern_Lab1", api_key_value="c9StuuVQPoMUeXWe.jB2XeWcI8poKUN59W13MxAbMemzY7SChOnX151GtTFNhysBBUPMRuEp5IK7SE3i1", ) mr = project.get_model_registry() model = mr.get_model("diabetes_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/diabetes_model.pkl") rf_model = model.steps[-1][1] # Load your model df = pd.DataFrame( [[20, 20, 30, 40]], columns=["age", "bmi", "hba1c_level", "blood_glucose_level"], ) def generate_plots(): # Create the first plot as before fig1, ax1 = plt.subplots() ax1.plot([1, 2, 3], [4, 5, 6]) ax1.set_title("Plot 1") # Generate the SHAP waterfall plot for fig2 fig2 = shap.plots.waterfall( shap.Explanation( values=shap.Explainer(rf_model).shap_values(df)[1][0], base_values=shap.Explainer(rf_model).expected_value[1], ) ) return fig1, fig2 with gr.Blocks() as demo: with gr.Row(): gr.Plot(generate_plots()[0]) # Display first plot in the first row with gr.Row(): gr.Plot(generate_plots()[1]) # Display SHAP waterfall plot in the second row demo.launch()