saad177 commited on
Commit
42c9c9e
1 Parent(s): e0e0cfb

update app

Browse files
Files changed (1) hide show
  1. app.py +7 -14
app.py CHANGED
@@ -8,7 +8,6 @@ import pandas as pd
8
  project = hopsworks.login()
9
  fs = project.get_feature_store()
10
 
11
-
12
  mr = project.get_model_registry()
13
  model = mr.get_model("iris_model", version=1)
14
  model_dir = model.download()
@@ -19,23 +18,18 @@ print("Model downloaded")
19
  def iris(sepal_length, sepal_width, petal_length, petal_width):
20
  print("Calling function")
21
  # df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]],
22
- df = pd.DataFrame(
23
- [[sepal_length, sepal_width, petal_length, petal_width]],
24
- columns=["sepal_length", "sepal_width", "petal_length", "petal_width"],
25
- )
26
  print("Predicting")
27
  print(df)
28
  # 'res' is a list of predictions returned as the label.
29
  res = model.predict(df)
30
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
31
  # the first element.
32
  # print("Res: {0}").format(res)
33
  print(res)
34
- flower_url = (
35
- "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/"
36
- + res[0]
37
- + ".png"
38
- )
39
  img = Image.open(requests.get(flower_url, stream=True).raw)
40
  return img
41
 
@@ -51,7 +45,6 @@ demo = gr.Interface(
51
  gr.inputs.Number(default=2.0, label="petal length (cm)"),
52
  gr.inputs.Number(default=1.0, label="petal width (cm)"),
53
  ],
54
- outputs=gr.Image(type="pil"),
55
- )
56
 
57
- demo.launch(debug=True)
 
8
  project = hopsworks.login()
9
  fs = project.get_feature_store()
10
 
 
11
  mr = project.get_model_registry()
12
  model = mr.get_model("iris_model", version=1)
13
  model_dir = model.download()
 
18
  def iris(sepal_length, sepal_width, petal_length, petal_width):
19
  print("Calling function")
20
  # df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]],
21
+ df = pd.DataFrame([[sepal_length, sepal_width, petal_length, petal_width]],
22
+ columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'])
 
 
23
  print("Predicting")
24
  print(df)
25
  # 'res' is a list of predictions returned as the label.
26
  res = model.predict(df)
27
+ # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
28
  # the first element.
29
  # print("Res: {0}").format(res)
30
  print(res)
31
+ flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + \
32
+ res[0] + ".png"
 
 
 
33
  img = Image.open(requests.get(flower_url, stream=True).raw)
34
  return img
35
 
 
45
  gr.inputs.Number(default=2.0, label="petal length (cm)"),
46
  gr.inputs.Number(default=1.0, label="petal width (cm)"),
47
  ],
48
+ outputs=gr.Image(type="pil"))
 
49
 
50
+ demo.launch(debug=True)