Spaces:
Runtime error
Runtime error
Commit
·
20370d0
1
Parent(s):
76f476f
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import base64
|
2 |
import os
|
3 |
|
4 |
-
import sys
|
5 |
import streamlit as st
|
6 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
-
from langchain.llms import OpenAI
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain.document_loaders import PDFMinerLoader
|
10 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
@@ -17,8 +14,6 @@ import torch
|
|
17 |
|
18 |
st.set_page_config(layout="wide")
|
19 |
|
20 |
-
|
21 |
-
|
22 |
def process_answer(instruction, qa_chain):
|
23 |
response = ''
|
24 |
generated_text = qa_chain.run(instruction)
|
@@ -41,13 +36,11 @@ def data_ingestion():
|
|
41 |
loader = PDFMinerLoader(os.path.join(root, file))
|
42 |
|
43 |
documents = loader.load()
|
44 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
45 |
splits = text_splitter.split_documents(documents)
|
46 |
|
47 |
-
# create embeddings
|
48 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
49 |
-
|
50 |
-
#embeddings = OpenAIEmbeddings()
|
51 |
vectordb = FAISS.from_documents(splits, embeddings)
|
52 |
vectordb.save_local("faiss_index")
|
53 |
|
|
|
1 |
import base64
|
2 |
import os
|
3 |
|
|
|
4 |
import streamlit as st
|
|
|
|
|
5 |
from langchain.chains import RetrievalQA
|
6 |
from langchain.document_loaders import PDFMinerLoader
|
7 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
|
|
14 |
|
15 |
st.set_page_config(layout="wide")
|
16 |
|
|
|
|
|
17 |
def process_answer(instruction, qa_chain):
|
18 |
response = ''
|
19 |
generated_text = qa_chain.run(instruction)
|
|
|
36 |
loader = PDFMinerLoader(os.path.join(root, file))
|
37 |
|
38 |
documents = loader.load()
|
39 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
40 |
splits = text_splitter.split_documents(documents)
|
41 |
|
42 |
+
# create embeddings here
|
43 |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
|
|
|
|
44 |
vectordb = FAISS.from_documents(splits, embeddings)
|
45 |
vectordb.save_local("faiss_index")
|
46 |
|