Spaces:
Runtime error
Runtime error
sabaridsnfuji
commited on
Commit
•
40891b3
1
Parent(s):
a6bf3ef
Update app.py
Browse files
app.py
CHANGED
@@ -1,162 +1,162 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from PIL import Image
|
4 |
-
# import torch
|
5 |
-
import os
|
6 |
-
import gradio as gr
|
7 |
-
|
8 |
-
# Below is the code refactored into a Python class for better modularity and reusability.
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
from transformers import TextStreamer
|
13 |
-
|
14 |
-
class FloorPlanAnalyzer:
|
15 |
-
def __init__(self, model_path, load_in_4bit=True, gradient_checkpointing="unsloth", device="cpu"):
|
16 |
-
"""
|
17 |
-
Initializes the FloorPlanAnalyzer with the specified model and configuration.
|
18 |
-
"""
|
19 |
-
from unsloth import FastVisionModel # Assuming unsloth package is installed
|
20 |
-
|
21 |
-
self.device = device
|
22 |
-
self.model, self.tokenizer = FastVisionModel.from_pretrained(
|
23 |
-
model_path,
|
24 |
-
load_in_4bit=load_in_4bit,
|
25 |
-
use_gradient_checkpointing=gradient_checkpointing,
|
26 |
-
)
|
27 |
-
FastVisionModel.for_inference(self.model)
|
28 |
-
|
29 |
-
def prepare_input(self, image_path, instruction):
|
30 |
-
"""
|
31 |
-
Prepares the input for the model by loading the image and applying the chat template.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
image_path (str): Path to the floor plan image.
|
35 |
-
instruction (str): Instruction text to guide the analysis.
|
36 |
-
|
37 |
-
Returns:
|
38 |
-
torch.Tensor: Processed inputs for the model.
|
39 |
-
"""
|
40 |
-
# Load image
|
41 |
-
image = Image.open(image_path).convert("RGB")
|
42 |
-
|
43 |
-
# Create message template
|
44 |
-
messages = [
|
45 |
-
{"role": "user", "content": [
|
46 |
-
{"type": "image"},
|
47 |
-
{"type": "text", "text": instruction}
|
48 |
-
]}
|
49 |
-
]
|
50 |
-
|
51 |
-
# Generate input text
|
52 |
-
input_text = self.tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
53 |
-
|
54 |
-
# Tokenize and prepare inputs
|
55 |
-
inputs = self.tokenizer(
|
56 |
-
image,
|
57 |
-
input_text,
|
58 |
-
add_special_tokens=False,
|
59 |
-
return_tensors="pt",
|
60 |
-
).to(self.device)
|
61 |
-
|
62 |
-
return inputs
|
63 |
-
|
64 |
-
def analyze(self, image_path, instruction, max_new_tokens=512, temperature=1.5, min_p=0.1):
|
65 |
-
"""
|
66 |
-
Analyzes the floor plan based on the provided instruction.
|
67 |
-
|
68 |
-
Args:
|
69 |
-
image_path (str): Path to the floor plan image.
|
70 |
-
instruction (str): Instruction guiding the analysis.
|
71 |
-
max_new_tokens (int): Maximum number of tokens to generate.
|
72 |
-
temperature (float): Sampling temperature for generation.
|
73 |
-
min_p (float): Minimum probability for nucleus sampling.
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
str: The generated output from the model.
|
77 |
-
"""
|
78 |
-
# Prepare inputs
|
79 |
-
inputs = self.prepare_input(image_path, instruction)
|
80 |
-
|
81 |
-
# Set up text streamer
|
82 |
-
text_streamer = TextStreamer(self.tokenizer, skip_prompt=True)
|
83 |
-
|
84 |
-
# Generate output
|
85 |
-
output = self.model.generate(
|
86 |
-
**inputs,
|
87 |
-
streamer=text_streamer,
|
88 |
-
max_new_tokens=max_new_tokens,
|
89 |
-
use_cache=True,
|
90 |
-
temperature=temperature,
|
91 |
-
min_p=min_p,
|
92 |
-
)
|
93 |
-
|
94 |
-
return output
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
# Instantiate the FloorPlanAnalyzer
|
100 |
-
model_path = "./model/"
|
101 |
-
analyzer = FloorPlanAnalyzer(model_path=model_path)
|
102 |
-
|
103 |
-
|
104 |
-
# Sample images for Gradio examples
|
105 |
-
# Define sample images for user convenience
|
106 |
-
sample_images = [
|
107 |
-
"./sample/10_2.jpg",
|
108 |
-
"./sample/10_10.jpg",
|
109 |
-
"./sample/0_10.jpg",
|
110 |
-
"./sample/2_12.jpg"
|
111 |
-
]
|
112 |
-
|
113 |
-
# Ensure sample images directory exists
|
114 |
-
os.makedirs("samples", exist_ok=True)
|
115 |
-
# Save some dummy sample images if they don't exist (you should replace these with actual images)
|
116 |
-
for i, sample in enumerate(sample_images):
|
117 |
-
if not os.path.exists(sample):
|
118 |
-
img = Image.new("RGB", (224, 224), color=(i * 50, i * 50, i * 50))
|
119 |
-
img.save(sample)
|
120 |
-
|
121 |
-
# Gradio prediction function
|
122 |
-
def predict_image(image, instruction):
|
123 |
-
"""
|
124 |
-
Processes the uploaded image and instruction through the FloorPlanAnalyzer.
|
125 |
-
|
126 |
-
Args:
|
127 |
-
image (PIL.Image.Image): The uploaded floor plan image.
|
128 |
-
instruction (str): The user-provided instruction.
|
129 |
-
|
130 |
-
Returns:
|
131 |
-
str: The generated output description.
|
132 |
-
"""
|
133 |
-
return analyzer.analyze(image, instruction)
|
134 |
-
|
135 |
-
gr_interface = gr.Interface(
|
136 |
-
fn=predict_image,
|
137 |
-
inputs=[
|
138 |
-
gr.Image(type="pil", label="Upload Floor Plan Image"),
|
139 |
-
gr.Textbox(
|
140 |
-
label="Instruction Text",
|
141 |
-
value="""You are an expert in architecture and interior design. Analyze the floor plan image and describe accurately the key features, room count, layout, and any other important details you observe."""
|
142 |
-
)
|
143 |
-
],
|
144 |
-
outputs=gr.Textbox(label="Analysis Result"),
|
145 |
-
title="Floor Plan Analyzer",
|
146 |
-
description="Upload a floor plan image and provide instructions to analyze it. Get detailed insights into the layout and design.",
|
147 |
-
examples=sample_images # Add the examples here
|
148 |
-
)
|
149 |
-
|
150 |
-
# # Gradio UI setup with examples
|
151 |
-
# gr_interface = gr.Interface(
|
152 |
-
# fn=predict_image,
|
153 |
-
# inputs=gr.Image(type="pil"), # Updated to gr.Image for image input
|
154 |
-
# outputs=[gr.Image(type="pil"), gr.Textbox()], # Updated to gr.Image and gr.Textbox
|
155 |
-
# title="House CAD Design Object Detection",
|
156 |
-
# description="Upload a CAD design image of a house to detect objects with bounding boxes and probabilities.",
|
157 |
-
# examples=sample_images # Add the examples here
|
158 |
-
# )
|
159 |
-
|
160 |
-
# Launch the Gradio interface if run as main
|
161 |
-
if __name__ == "__main__":
|
162 |
-
gr_interface.launch()
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
# import torch
|
5 |
+
import os
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Below is the code refactored into a Python class for better modularity and reusability.
|
9 |
+
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from transformers import TextStreamer
|
13 |
+
|
14 |
+
class FloorPlanAnalyzer:
|
15 |
+
def __init__(self, model_path, load_in_4bit=True, gradient_checkpointing="unsloth", device="cpu"):
|
16 |
+
"""
|
17 |
+
Initializes the FloorPlanAnalyzer with the specified model and configuration.
|
18 |
+
"""
|
19 |
+
from unsloth import FastVisionModel # Assuming unsloth package is installed
|
20 |
+
|
21 |
+
self.device = device
|
22 |
+
self.model, self.tokenizer = FastVisionModel.from_pretrained(
|
23 |
+
model_path,
|
24 |
+
load_in_4bit=load_in_4bit,
|
25 |
+
use_gradient_checkpointing=gradient_checkpointing,
|
26 |
+
)
|
27 |
+
FastVisionModel.for_inference(self.model)
|
28 |
+
|
29 |
+
def prepare_input(self, image_path, instruction):
|
30 |
+
"""
|
31 |
+
Prepares the input for the model by loading the image and applying the chat template.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
image_path (str): Path to the floor plan image.
|
35 |
+
instruction (str): Instruction text to guide the analysis.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
torch.Tensor: Processed inputs for the model.
|
39 |
+
"""
|
40 |
+
# Load image
|
41 |
+
image = Image.open(image_path).convert("RGB")
|
42 |
+
|
43 |
+
# Create message template
|
44 |
+
messages = [
|
45 |
+
{"role": "user", "content": [
|
46 |
+
{"type": "image"},
|
47 |
+
{"type": "text", "text": instruction}
|
48 |
+
]}
|
49 |
+
]
|
50 |
+
|
51 |
+
# Generate input text
|
52 |
+
input_text = self.tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
53 |
+
|
54 |
+
# Tokenize and prepare inputs
|
55 |
+
inputs = self.tokenizer(
|
56 |
+
image,
|
57 |
+
input_text,
|
58 |
+
add_special_tokens=False,
|
59 |
+
return_tensors="pt",
|
60 |
+
).to(self.device)
|
61 |
+
|
62 |
+
return inputs
|
63 |
+
|
64 |
+
def analyze(self, image_path, instruction, max_new_tokens=512, temperature=1.5, min_p=0.1):
|
65 |
+
"""
|
66 |
+
Analyzes the floor plan based on the provided instruction.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
image_path (str): Path to the floor plan image.
|
70 |
+
instruction (str): Instruction guiding the analysis.
|
71 |
+
max_new_tokens (int): Maximum number of tokens to generate.
|
72 |
+
temperature (float): Sampling temperature for generation.
|
73 |
+
min_p (float): Minimum probability for nucleus sampling.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
str: The generated output from the model.
|
77 |
+
"""
|
78 |
+
# Prepare inputs
|
79 |
+
inputs = self.prepare_input(image_path, instruction)
|
80 |
+
|
81 |
+
# Set up text streamer
|
82 |
+
text_streamer = TextStreamer(self.tokenizer, skip_prompt=True)
|
83 |
+
|
84 |
+
# Generate output
|
85 |
+
output = self.model.generate(
|
86 |
+
**inputs,
|
87 |
+
streamer=text_streamer,
|
88 |
+
max_new_tokens=max_new_tokens,
|
89 |
+
use_cache=True,
|
90 |
+
temperature=temperature,
|
91 |
+
min_p=min_p,
|
92 |
+
)
|
93 |
+
|
94 |
+
return output
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
# Instantiate the FloorPlanAnalyzer
|
100 |
+
model_path = "./model/"
|
101 |
+
analyzer = FloorPlanAnalyzer(model_path=model_path)
|
102 |
+
|
103 |
+
|
104 |
+
# Sample images for Gradio examples
|
105 |
+
# Define sample images for user convenience
|
106 |
+
sample_images = [
|
107 |
+
"./sample/10_2.jpg",
|
108 |
+
"./sample/10_10.jpg",
|
109 |
+
"./sample/0_10.jpg",
|
110 |
+
"./sample/2_12.jpg"
|
111 |
+
]
|
112 |
+
|
113 |
+
# Ensure sample images directory exists
|
114 |
+
os.makedirs("samples", exist_ok=True)
|
115 |
+
# Save some dummy sample images if they don't exist (you should replace these with actual images)
|
116 |
+
for i, sample in enumerate(sample_images):
|
117 |
+
if not os.path.exists(sample):
|
118 |
+
img = Image.new("RGB", (224, 224), color=(i * 50, i * 50, i * 50))
|
119 |
+
img.save(sample)
|
120 |
+
|
121 |
+
# Gradio prediction function
|
122 |
+
def predict_image(image, instruction):
|
123 |
+
"""
|
124 |
+
Processes the uploaded image and instruction through the FloorPlanAnalyzer.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
image (PIL.Image.Image): The uploaded floor plan image.
|
128 |
+
instruction (str): The user-provided instruction.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
str: The generated output description.
|
132 |
+
"""
|
133 |
+
return analyzer.analyze(image, instruction)
|
134 |
+
|
135 |
+
gr_interface = gr.Interface(
|
136 |
+
fn=predict_image,
|
137 |
+
inputs=[
|
138 |
+
gr.Image(type="pil", label="Upload Floor Plan Image"),
|
139 |
+
gr.Textbox(
|
140 |
+
label="Instruction Text",
|
141 |
+
value="""You are an expert in architecture and interior design. Analyze the floor plan image and describe accurately the key features, room count, layout, and any other important details you observe."""
|
142 |
+
)
|
143 |
+
],
|
144 |
+
outputs=gr.Textbox(label="Analysis Result"),
|
145 |
+
title="Floor Plan Analyzer",
|
146 |
+
description="Upload a floor plan image and provide instructions to analyze it. Get detailed insights into the layout and design.",
|
147 |
+
examples=sample_images # Add the examples here
|
148 |
+
)
|
149 |
+
|
150 |
+
# # Gradio UI setup with examples
|
151 |
+
# gr_interface = gr.Interface(
|
152 |
+
# fn=predict_image,
|
153 |
+
# inputs=gr.Image(type="pil"), # Updated to gr.Image for image input
|
154 |
+
# outputs=[gr.Image(type="pil"), gr.Textbox()], # Updated to gr.Image and gr.Textbox
|
155 |
+
# title="House CAD Design Object Detection",
|
156 |
+
# description="Upload a CAD design image of a house to detect objects with bounding boxes and probabilities.",
|
157 |
+
# examples=sample_images # Add the examples here
|
158 |
+
# )
|
159 |
+
|
160 |
+
# Launch the Gradio interface if run as main
|
161 |
+
if __name__ == "__main__":
|
162 |
+
gr_interface.launch()
|