|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import os |
|
import json |
|
from openvino.runtime import Core |
|
from tqdm import tqdm |
|
from PIL import Image |
|
|
|
from tf_post_processing import non_max_suppression |
|
|
|
|
|
classification_model_xml = "./model/best.xml" |
|
core = Core() |
|
config = { |
|
"INFERENCE_NUM_THREADS": 2, |
|
"ENABLE_CPU_PINNING": True |
|
} |
|
model = core.read_model(model=classification_model_xml) |
|
compiled_model = core.compile_model(model=model, device_name="CPU", config=config) |
|
|
|
label_to_class_text = {0: 'range', |
|
1: ' entry door', |
|
2: 'kitchen sink', |
|
3: ' bathroom sink', |
|
4: 'toilet', |
|
5: 'double folding door', |
|
6: 'window', |
|
7: 'shower', |
|
8: 'bathtub', |
|
9: 'single folding door', |
|
10: 'dishwasher', |
|
11: 'refrigerator'} |
|
|
|
|
|
def predict_image(image): |
|
|
|
image = np.array(image) |
|
temp_image =image |
|
|
|
img_size = 960 |
|
resized_image = cv2.resize(image, (img_size, img_size)) / 255.0 |
|
resized_image = resized_image.transpose(2, 0, 1) |
|
reshaped_image = np.expand_dims(resized_image, axis=0).astype(np.float32) |
|
|
|
im_height, im_width, _ = image.shape |
|
output_numpy = compiled_model(reshaped_image)[0] |
|
results = non_max_suppression(output_numpy, conf_thres=0.2, iou_thres=0.6, max_wh=15000)[0] |
|
|
|
|
|
predictions = [] |
|
|
|
|
|
for result in results: |
|
boxes = result[:4] |
|
prob = result[4] |
|
classes = int(result[5]) |
|
|
|
x1, y1, x2, y2 = np.uint16([ |
|
boxes[0] * im_width, |
|
boxes[1] * im_height, |
|
boxes[2] * im_width, |
|
boxes[3] * im_height |
|
]) |
|
|
|
if prob > 0.2: |
|
cv2.rectangle(temp_image, (x1, y1), (x2, y2), (0, 0, 255), 2) |
|
label_text = f"{classes} {round(prob, 2)}" |
|
cv2.putText(temp_image, label_text, (x1, y1), 0, 0.5, (0, 255, 0), 2) |
|
|
|
|
|
predictions.append({ |
|
"class": label_to_class_text[classes], |
|
"probability": round(float(prob), 2), |
|
"coordinates": { |
|
"xmin": int(x1), |
|
"ymin": int(y1), |
|
"xmax": int(x2), |
|
"ymax": int(y2) |
|
} |
|
}) |
|
|
|
|
|
pil_image = Image.fromarray(cv2.cvtColor(temp_image, cv2.COLOR_BGR2RGB)) |
|
|
|
return pil_image, json.dumps(predictions, indent=4) |
|
|
|
|
|
|
|
sample_images = [ |
|
"./sample/10_2.jpg", |
|
"./sample/10_10.jpg", |
|
"./sample/10_12.jpg" |
|
] |
|
|
|
|
|
|
|
gr_interface = gr.Interface( |
|
fn=predict_image, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[gr.Image(type="pil"), gr.Textbox()], |
|
title="House CAD Design Object Detection", |
|
description="Upload a CAD design image of a house to detect objects with bounding boxes and probabilities.", |
|
examples=sample_images |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
gr_interface.launch() |
|
|