# -*- coding: utf-8 -*- """ Created on Mon Sep 4 16:03:42 2023 @author: SABARI """ import time import tensorflow as tf import numpy as np #from lsnms import nms, wbc def box_iou(box1, box2, eps=1e-7): """ Calculate intersection-over-union (IoU) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Args: box1 (tf.Tensor): A tensor of shape (N, 4) representing N bounding boxes. box2 (tf.Tensor): A tensor of shape (M, 4) representing M bounding boxes. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. Returns: (tf.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2. """ a1, a2 = tf.split(box1, 2, axis=1) b1, b2 = tf.split(box2, 2, axis=1) inter = tf.reduce_prod(tf.maximum(tf.minimum(a2, b2) - tf.maximum(a1, b1), 0), axis=1) return inter / (tf.reduce_prod(a2 - a1, axis=1) + tf.reduce_prod(b2 - b1, axis=1) - inter + eps) def xywh2xyxy(x): """ Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner. Args: x (tf.Tensor): The input bounding box coordinates in (x, y, width, height) format. Returns: y (tf.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format. """ # Assuming x is a NumPy array y = np.copy(x) y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y return y def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, agnostic=False, multi_label=False, max_det=300, nc=0, # number of classes (optional) max_time_img=0.05, max_nms=100, max_wh=7680): """ Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box. Arguments: prediction (tf.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes) containing the predicted boxes, classes, and masks. The tensor should be in the format output by a model, such as YOLO. conf_thres (float): The confidence threshold below which boxes will be filtered out. Valid values are between 0.0 and 1.0. iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS. Valid values are between 0.0 and 1.0. agnostic (bool): If True, the model is agnostic to the number of classes, and all classes will be considered as one. multi_label (bool): If True, each box may have multiple labels. max_det (int): The maximum number of boxes to keep after NMS. nc (int): (optional) The number of classes output by the model. Any indices after this will be considered masks. max_time_img (float): The maximum time (seconds) for processing one image. max_nms (int): The maximum number of boxes into tf.image.combined_non_max_suppression(). max_wh (int): The maximum box width and height in pixels Returns: (List[tf.Tensor]): A list of length batch_size, where each element is a tensor of shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns (x1, y1, x2, y2, confidence, class, mask1, mask2, ...). """ # Checks assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out) prediction = prediction[0] # select only inference output bs = np.shape(prediction)[0] # batch size nc = nc or (np.shape(prediction)[1] - 4) # number of classes nm = np.shape(prediction)[1] - nc - 4 mi = 4 + nc # mask start index #xc = tf.math.reduce_any(prediction[:, 4:mi] > conf_thres, axis=1) # candidates xc = np.amax(prediction[:, 4:mi], axis=1) > conf_thres # Settings # min_wh = 2 # (pixels) minimum box width and height time_limit = 0.5 + max_time_img * tf.cast(bs, tf.float32) # seconds to quit after multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) t = time.time() output = [np.zeros((0, 6 + nm))] * bs for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x = tf.where(tf.math.logical_or(x[:, 2:4] < min_wh, x[:, 2:4] > max_wh), tf.constant(0, dtype=tf.float32), x) # width-height #x = tf.boolean_mask(x, xc[xi]) #x = x.transpose(0, -1)[xc[xi]] # confidence # Assuming x, xc, and xi are NumPy arrays x = np.transpose(x) #x = x.transpose()[:, xc[xi]] x = x[xc[xi]] # If none remain process next image if np.shape(x)[0] == 0: continue # Detections matrix nx6 (xyxy, conf, cls) #box, cls, mask = tf.split(x, [4, nc, nm], axis=1) # Assuming x is a NumPy array box = x[:, :4] cls = x[:, 4:4 + nc] mask = x[:, 4 + nc:] box = xywh2xyxy(box) # center_x, center_y, width, height) to (x1, y1, x2, y2) # Assuming cls is a NumPy array if multi_label: i, j = np.where(cls > conf_thres) x = np.concatenate([box[i], np.expand_dims(cls[i, j], axis=-1), np.expand_dims(j, axis=-1).astype(np.float32), mask[i]], axis=1) else: conf = np.max(cls, axis=1) j = np.argmax(cls, axis=1) keep = np.where(conf > conf_thres)[0] x = np.concatenate([box[keep], np.expand_dims(conf[keep], axis=-1), np.expand_dims(j[keep], axis=-1).astype(np.float32), mask[keep]], axis=1) # Check shape n = np.shape(x)[0] # number of boxes if n == 0: # no boxes continue #x = x[tf.argsort(x[:, 4], direction='DESCENDING')[:max_nms]] # sort by confidence and remove excess boxes sorted_indices = np.argsort(x[:, 4])[::-1] # Sort indices in descending order of confidence x = x[sorted_indices[:max_nms]] # Keep the top max_nms boxes # Batched NMS c = x[:, 5:6] * (0.0 if agnostic else tf.cast(max_wh, tf.float32)) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = tf.image.non_max_suppression(boxes, scores, max_nms, iou_threshold=iou_thres) # NMS i = i.numpy() i = i[:max_det] # limit detections output[xi] = x[i,:] if (time.time() - t) > time_limit: break # time limit exceeded return output import numpy as np def optimized_object_detection(prediction, conf_thres=0.25, iou_thres=0.45, agnostic=False, multi_label=False, max_det=300, nc=0, max_time_img=0.05, max_nms=100, max_wh=7680): assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' if isinstance(prediction, (list, tuple)): prediction = prediction[0] bs, _, _ = prediction.shape # Get batch size and dimensions if nc == 0: nc = prediction.shape[1] - 4 nm = prediction.shape[1] - nc - 4 mi = 4 + nc xc = np.amax(prediction[:, 4:mi], axis=1) > conf_thres time_limit = 0.5 + max_time_img * bs multi_label &= nc > 1 t = time.time() output = [np.zeros((0, 6 + nm))] * bs for xi, x in enumerate(prediction): x = np.transpose(x) x = x[xc[xi]] if np.shape(x)[0] == 0: continue box = x[:, :4] cls = x[:, 4:4 + nc] mask = x[:, 4 + nc:] box = xywh2xyxy(box) if multi_label: i, j = np.where(cls > conf_thres) x = np.concatenate([box[i], np.expand_dims(cls[i, j], axis=-1), np.expand_dims(j, axis=-1).astype(np.float32), mask[i]], axis=1) else: conf = np.max(cls, axis=1) j = np.argmax(cls, axis=1) keep = np.where(conf > conf_thres)[0] x = np.concatenate([box[keep], np.expand_dims(conf[keep], axis=-1), np.expand_dims(j[keep], axis=-1).astype(np.float32), mask[keep]], axis=1) n = np.shape(x)[0] if n == 0: continue sorted_indices = np.argsort(x[:, 4])[::-1] x = x[sorted_indices[:max_nms]] c = x[:, 5:6] * (0.0 if agnostic else max_wh) boxes, scores = x[:, :4] + c, x[:, 4] i = tf.image.non_max_suppression(boxes, scores, max_nms, iou_threshold=iou_thres) #keep = nms(boxes, scores, iou_threshold=iou_thres) i = i.numpy() i = i[:max_det] output[xi] = x[keep,:] if (time.time() - t) > time_limit: break return output #output_numpy = np.load(r"D:\object_face_person_detection\yolov8_tf_results\gustavo-alves-YOXSC4zRcxw-unsplash.npy") #detections = non_max_suppression(output_numpy, conf_thres=0.4, iou_thres=0.4)[0] #print(detections)