Spaces:
Build error
Build error
import gradio as gr | |
import boto3 | |
from botocore import UNSIGNED | |
from botocore.client import Config | |
from langchain.document_loaders import WebBaseLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=10) | |
from langchain.llms import HuggingFaceHub | |
model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300}) | |
from langchain.embeddings import HuggingFaceHubEmbeddings | |
embeddings = HuggingFaceHubEmbeddings() | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQA | |
from langchain.prompts import ChatPromptTemplate | |
#web_links = ["https://www.databricks.com/","https://help.databricks.com","https://docs.databricks.com","https://kb.databricks.com/","http://docs.databricks.com/getting-started/index.html","http://docs.databricks.com/introduction/index.html","http://docs.databricks.com/getting-started/tutorials/index.html","http://docs.databricks.com/machine-learning/index.html","http://docs.databricks.com/sql/index.html"] | |
#loader = WebBaseLoader(web_links) | |
#documents = loader.load() | |
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) | |
s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3') | |
db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings) | |
db.get() | |
#texts = text_splitter.split_documents(documents) | |
#db = Chroma.from_documents(texts, embedding_function=embeddings) | |
retriever = db.as_retriever() | |
global qa | |
qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever, return_source_documents=True) | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0]) | |
history[-1][1] = response['result'] | |
return history | |
def infer(question): | |
query = question | |
result = qa({"query": query}) | |
return result | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chat with PDF</h1> | |
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br /> | |
when everything is ready, you can start asking questions about the pdf ;)</p> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
chatbot = gr.Chatbot([], elem_id="chatbot") | |
with gr.Row(): | |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot | |
) | |
demo.launch() |