docs_qachat / app.py
sabazo's picture
added unsigned boto3 requests config
ff8cb83
raw
history blame
2.81 kB
import gradio as gr
import boto3
from botocore import UNSIGNED
from botocore.client import Config
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=10)
from langchain.llms import HuggingFaceHub
model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300})
from langchain.embeddings import HuggingFaceHubEmbeddings
embeddings = HuggingFaceHubEmbeddings()
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.prompts import ChatPromptTemplate
#web_links = ["https://www.databricks.com/","https://help.databricks.com","https://docs.databricks.com","https://kb.databricks.com/","http://docs.databricks.com/getting-started/index.html","http://docs.databricks.com/introduction/index.html","http://docs.databricks.com/getting-started/tutorials/index.html","http://docs.databricks.com/machine-learning/index.html","http://docs.databricks.com/sql/index.html"]
#loader = WebBaseLoader(web_links)
#documents = loader.load()
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3')
db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
db.get()
#texts = text_splitter.split_documents(documents)
#db = Chroma.from_documents(texts, embedding_function=embeddings)
retriever = db.as_retriever()
global qa
qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever, return_source_documents=True)
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0])
history[-1][1] = response['result']
return history
def infer(question):
query = question
result = qa({"query": query})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with PDF</h1>
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
when everything is ready, you can start asking questions about the pdf ;)</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
chatbot = gr.Chatbot([], elem_id="chatbot")
with gr.Row():
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
demo.launch()