File size: 20,674 Bytes
82bee2d
 
 
 
 
 
e1f572c
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
82bee2d
 
 
 
e1f572c
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
82bee2d
 
 
 
 
e1f572c
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
 
 
 
 
 
 
 
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
82bee2d
 
e1f572c
 
 
 
 
 
 
 
 
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
 
 
 
 
 
82bee2d
 
 
 
 
 
 
 
e1f572c
 
82bee2d
e1f572c
82bee2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f572c
82bee2d
e1f572c
 
 
 
 
 
 
 
 
 
82bee2d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "authorship_tag": "ABX9TyP8lUVuJ31ic7qIWsz2xSyw",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/almutareb/InnovationPathfinderAI/blob/main/example/Langgraph_CorrectiveRAG_mistral_chroma.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "jLMHfRq9kAP9"
      },
      "outputs": [],
      "source": [
        "!pip install -Uq langchain-community\n",
        "!pip install -Uq langchain\n",
        "!pip install -Uq langgraph\n",
        "!pip install -Uq chromadb\n",
        "!pip install -Uq sentence-transformers\n",
        "!pip install -Uq gpt4all\n",
        "!pip install -qU google-search-results"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "from google.colab import userdata\n",
        "os.environ[\"HUGGINGFACEHUB_API_TOKEN\"] = userdata.get('HUGGINGFACEHUB_API_TOKEN')\n",
        "os.environ[\"GOOGLE_CSE_ID\"] = userdata.get('GOOGLE_CSE_ID')\n",
        "os.environ[\"GOOGLE_API_KEY\"] = userdata.get('GOOGLE_API_KEY')"
      ],
      "metadata": {
        "id": "kPF-3dzGuAfT"
      },
      "execution_count": 2,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### LLMs"
      ],
      "metadata": {
        "id": "XTtbWrue9l3E"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# HF libraries\n",
        "from langchain_community.llms import HuggingFaceEndpoint\n",
        "\n",
        "# Load the model from the Hugging Face Hub\n",
        "llm_mid = HuggingFaceEndpoint(repo_id=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
        "                          temperature=0.1,\n",
        "                          max_new_tokens=1024,\n",
        "                          repetition_penalty=1.2,\n",
        "                          return_full_text=False\n",
        "    )\n",
        "\n",
        "llm_small = HuggingFaceEndpoint(repo_id=\"mistralai/Mistral-7B-Instruct-v0.2\",\n",
        "                          temperature=0.1,\n",
        "                          max_new_tokens=1024,\n",
        "                          repetition_penalty=1.2,\n",
        "                          return_full_text=False\n",
        "    )"
      ],
      "metadata": {
        "id": "EDZyRq-wuIuy"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Chroma DB"
      ],
      "metadata": {
        "id": "mdMx_T8V9npk"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
        "from langchain_community.document_loaders import WebBaseLoader\n",
        "from langchain_community.vectorstores import Chroma\n",
        "from langchain_community.embeddings import GPT4AllEmbeddings\n",
        "from langchain.embeddings import HuggingFaceEmbeddings\n",
        "\n",
        "# Load\n",
        "url = \"https://lilianweng.github.io/posts/2023-06-23-agent/\"\n",
        "loader = WebBaseLoader(url)\n",
        "docs = loader.load()\n",
        "\n",
        "# Split\n",
        "text_splitter = RecursiveCharacterTextSplitter(\n",
        "    chunk_size=500, chunk_overlap=100\n",
        ")\n",
        "all_splits = text_splitter.split_documents(docs)\n",
        "\n",
        "# Embed and index\n",
        "#embedding = GPT4AllEmbeddings()\n",
        "embedding = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\")\n",
        "\n",
        "\n",
        "# Index\n",
        "vectorstore = Chroma.from_documents(\n",
        "    documents=all_splits,\n",
        "    collection_name=\"rag-chroma\",\n",
        "    embedding=embedding,\n",
        ")\n",
        "retriever = vectorstore.as_retriever()"
      ],
      "metadata": {
        "id": "LkX9ehoeupSz"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "###State"
      ],
      "metadata": {
        "id": "0A-7_d3G9b8h"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from typing import Annotated, Dict, TypedDict\n",
        "from langchain_core.messages import BaseMessage\n",
        "\n",
        "class GraphState(TypedDict):\n",
        "  \"\"\"\n",
        "  Represents the state of our graph.\n",
        "\n",
        "  Attributes:\n",
        "    key: A dictionary where each key is a string.\n",
        "  \"\"\"\n",
        "\n",
        "  keys: Dict[str, any]"
      ],
      "metadata": {
        "id": "fRzYhmOs7_GJ"
      },
      "execution_count": 5,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Nodes"
      ],
      "metadata": {
        "id": "bPhIdcVD9pgV"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import json\n",
        "import operator\n",
        "from typing import Annotated, Sequence, TypedDict\n",
        "\n",
        "from langchain_core.output_parsers import JsonOutputParser\n",
        "from langchain.prompts import PromptTemplate\n",
        "from langchain.schema import Document\n",
        "from langchain.tools import Tool\n",
        "from langchain_community.utilities import GoogleSearchAPIWrapper\n",
        "from langchain_community.vectorstores import Chroma\n",
        "from langchain_core.output_parsers import StrOutputParser\n",
        "from langchain_core.runnables import RunnablePassthrough\n",
        "\n",
        "### Nodes ###\n",
        "\n",
        "def retrieve(state):\n",
        "  \"\"\"\n",
        "  Retrieve documents\n",
        "\n",
        "  Args:\n",
        "    state (dict): The current graph state\n",
        "\n",
        "  Returns:\n",
        "    state (dict): New key added to state, documents, that contains retrieved documents\n",
        "  \"\"\"\n",
        "  print(\"---RETRIEVE---\")\n",
        "  state_dict = state[\"keys\"]\n",
        "  question = state_dict[\"question\"]\n",
        "  local = state_dict[\"local\"]\n",
        "  documents = retriever.get_relevant_documents(question)\n",
        "\n",
        "  return {\"keys\": {\"documents\": documents, \"local\": local, \"question\": question}}\n",
        "\n",
        "def generate(state):\n",
        "  \"\"\"\n",
        "  Generate answer\n",
        "\n",
        "  Args:\n",
        "    state (dict): The current graph state\n",
        "\n",
        "  Returns:\n",
        "    state (dict): New key added to state, generation, that contains generation\n",
        "  \"\"\"\n",
        "  print(\"---GENERATE---\")\n",
        "  state_dict = state[\"keys\"]\n",
        "  question = state_dict[\"question\"]\n",
        "  documents = state_dict[\"documents\"]\n",
        "  local = state_dict[\"local\"]\n",
        "\n",
        "  # Prompt\n",
        "  prompt = PromptTemplate(\n",
        "      template=\"\"\"You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. \\n\n",
        "      If you don't know the answer, just say that you don't know. Keep the answer concise. \\n\n",
        "      Question: {question} \\n\n",
        "      Context: {context} \\n\n",
        "      \"\"\",\n",
        "      input_variables=[\"question\",\"context\"],\n",
        "  )\n",
        "\n",
        "  # LLM\n",
        "  llm = llm_mid\n",
        "\n",
        "  # Post-processing\n",
        "  def format_docs(docs):\n",
        "    return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
        "\n",
        "  # Chain\n",
        "  rag_chain = prompt | llm | StrOutputParser()\n",
        "\n",
        "\n",
        "  # Run\n",
        "  generation = rag_chain.invoke({\"context\": documents, \"question\": question})\n",
        "\n",
        "  return {\n",
        "      \"keys\": {\"documents\": documents, \"question\": question, \"generation\": generation}\n",
        "  }\n",
        "\n",
        "def grade_documents(state):\n",
        "  \"\"\"\n",
        "  Determines whether the retrieved documents are relevant to the question.\n",
        "\n",
        "  Args:\n",
        "    state (dict): The current graph state\n",
        "\n",
        "  Returns:\n",
        "    state (dict): Update documents key with relevant documents\n",
        "  \"\"\"\n",
        "\n",
        "  print(\"---CHECK RELEVANCE---\")\n",
        "  state_dict = state[\"keys\"]\n",
        "  question = state_dict[\"question\"]\n",
        "  documents = state_dict[\"documents\"]\n",
        "  local = state_dict[\"local\"]\n",
        "\n",
        "  # LLM\n",
        "  llm = llm_small\n",
        "\n",
        "  prompt = PromptTemplate(\n",
        "      template=\"\"\"You are a grader assessing relevance of a retrieved document to a user question. \\n\n",
        "        Here is the retrieved document: \\n\\n {context} \\n\\n\n",
        "        Here is the user question: {question} \\n\n",
        "        If the document contains keywords related to the user question, grade it as relevant. \\n\n",
        "        It does not need to be a stringent test. The goal is to filter out erroneous retrievals. \\n\n",
        "        Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \\n\n",
        "        Provide the binary score as a JSON with a single key 'score' and no premable or explaination.\n",
        "        \"\"\",\n",
        "        input_variables=[\"question\",\"context\"],\n",
        "  )\n",
        "\n",
        "  chain = prompt | llm | JsonOutputParser()\n",
        "\n",
        "  # Score\n",
        "  filtered_docs = []\n",
        "  search = \"No\"   #Default to do not opt for web search to supplement retrieval\n",
        "  for d in documents:\n",
        "    score = chain.invoke(\n",
        "        {\n",
        "            \"question\": question,\n",
        "            \"context\": d.page_content,\n",
        "        }\n",
        "    )\n",
        "    grade = score[\"score\"]\n",
        "    if grade == \"yes\":\n",
        "      print(\"---GRADE: DOCUMENT RELEVANT---\")\n",
        "      filtered_docs.append(d)\n",
        "    else:\n",
        "      print(\"---GRADE: DOCUMENT IRRELEVANT---\")\n",
        "      search = \"Yes\"  #Perform web search\n",
        "      continue\n",
        "\n",
        "  return {\n",
        "      \"keys\": {\n",
        "          \"documents\": filtered_docs,\n",
        "          \"question\": question,\n",
        "          \"local\": local,\n",
        "          \"run_web_search\": search,\n",
        "      }\n",
        "  }\n",
        "\n",
        "def transform_query(state):\n",
        "  \"\"\"\n",
        "  Transform the query to produce a better question.\n",
        "\n",
        "  Args:\n",
        "    state (dict): The current graph state\n",
        "\n",
        "  Returns:\n",
        "    state (dict): Updates question key with a re-phrased question\n",
        "  \"\"\"\n",
        "  print(\"---TRANSFORM QUERY---\")\n",
        "  state_dict = state[\"keys\"]\n",
        "  question = state_dict[\"question\"]\n",
        "  documents = state_dict[\"documents\"]\n",
        "  local = state_dict[\"local\"]\n",
        "\n",
        "  # Create a prompt template with format instructions and the query\n",
        "  prompt = PromptTemplate(\n",
        "      template=\"\"\"You are generating questions that are well optimized for retrieval. \\n\n",
        "      Look at the input and try to reasin about the underlying sematic intent / meaning . \\n\n",
        "      Here is the initial question:\n",
        "      \\n -------- \\n\n",
        "      {question}\n",
        "      \\n -------- \\n\n",
        "      Provide an improved question without any premable, only respond with the updated question: \"\"\",\n",
        "      input_variables=[\"question\"],\n",
        "  )\n",
        "\n",
        "  # Grader\n",
        "  # LLM\n",
        "  llm = llm_mid\n",
        "\n",
        "  # Prompt\n",
        "  chain = prompt | llm | StrOutputParser()\n",
        "  better_question = chain.invoke({\"question\": question})\n",
        "\n",
        "  return {\n",
        "      \"keys\": {\"documents\": documents, \"question\": better_question, \"local\": local}\n",
        "  }\n",
        "\n",
        "\n",
        "def web_search(state):\n",
        "  \"\"\"\n",
        "  Web search based on the re-phrased question using google\n",
        "\n",
        "  Args:\n",
        "    state (dict): The current graph state\n",
        "  Returns:\n",
        "    state (dict): Web results appended to documents.\n",
        "  \"\"\"\n",
        "\n",
        "  print(\"---WEB SEARCH---\")\n",
        "  state_dict = state[\"keys\"]\n",
        "  question = state_dict[\"question\"]\n",
        "  documents = state_dict[\"documents\"]\n",
        "  local = state_dict[\"local\"]\n",
        "\n",
        "  websearch = GoogleSearchAPIWrapper(k=3)\n",
        "  google_search = Tool(\n",
        "      name=\"google_search\",\n",
        "      description=\"Search Google for recent results.\",\n",
        "      func=websearch.run,\n",
        "  )\n",
        "  web_search = google_search.run(question)\n",
        "  #filtered_contents = [d[\"page_content\"] for d in web_search if d[\"page_content\"] is not None]\n",
        "  #web_results = \"\\n\".join(filtered_contents)\n",
        "  web_results = Document(page_content=web_search)\n",
        "  documents.append(web_results)\n",
        "\n",
        "  return {\"keys\": {\"documents\": documents, \"local\": local, \"question\": question}}"
      ],
      "metadata": {
        "id": "1Sn5NCyl9pRE"
      },
      "execution_count": 6,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Edges"
      ],
      "metadata": {
        "id": "7n6TeQcrugvF"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "def decide_to_generate(state):\n",
        "  \"\"\"\n",
        "  Determines whether to generate an answer or re-generate a question for web search.\n",
        "\n",
        "  Args:\n",
        "    state (dict): The current state of the agent, including all keys.\n",
        "\n",
        "  Returns:\n",
        "    str: Next node to call\n",
        "  \"\"\"\n",
        "\n",
        "  print(\"---DECIDE TO GENERATE---\")\n",
        "  state_dict = state[\"keys\"]\n",
        "  question = state_dict[\"question\"]\n",
        "  filtered_documents = state_dict[\"documents\"]\n",
        "  search = state_dict[\"run_web_search\"]\n",
        "\n",
        "  if search == \"Yes\":\n",
        "    # All documents have been filtered check_relevance\n",
        "    # We will re-generate a new query\n",
        "    print(\"---DECISION: TRANSFORM QUERY and RUN WEB SEARCH---\")\n",
        "    return \"transform_query\"\n",
        "  else:\n",
        "    # We have relevant documents, so generate answer\n",
        "    print(\"---DECISION: GENERATE---\")\n",
        "    return \"generate\""
      ],
      "metadata": {
        "id": "l9djuUIx-_ZK"
      },
      "execution_count": 7,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Graph"
      ],
      "metadata": {
        "id": "Z6g94SltdUEc"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import pprint\n",
        "from langgraph.graph import END, StateGraph\n",
        "\n",
        "workflow = StateGraph(GraphState)\n",
        "\n",
        "# Define the nodes\n",
        "workflow.add_node(\"retrieve\", retrieve)     #retrieve\n",
        "workflow.add_node(\"grade_documents\", grade_documents)   # grade documents\n",
        "workflow.add_node(\"generate\", generate)\n",
        "workflow.add_node(\"transform_query\", transform_query)\n",
        "workflow.add_node(\"web_search\", web_search)\n",
        "\n",
        "# Build graph\n",
        "workflow.set_entry_point(\"retrieve\")\n",
        "workflow.add_edge(\"retrieve\", \"grade_documents\")\n",
        "workflow.add_conditional_edges(\n",
        "    \"grade_documents\",\n",
        "    decide_to_generate,\n",
        "    {\n",
        "        \"transform_query\": \"transform_query\",\n",
        "        \"generate\": \"generate\",\n",
        "    },\n",
        ")\n",
        "workflow.add_edge(\"transform_query\", \"web_search\")\n",
        "workflow.add_edge(\"web_search\", \"generate\")\n",
        "workflow.add_edge(\"generate\", END)\n",
        "\n",
        "# Compile\n",
        "app = workflow.compile()"
      ],
      "metadata": {
        "id": "5pyAWscidTUt"
      },
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### RUN"
      ],
      "metadata": {
        "id": "Yb4oGR4Dfoud"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Run\n",
        "inputs = {\n",
        "    \"keys\": {\n",
        "        \"question\": \"Explain how the different types of agent memory work?\",\n",
        "        \"local\": \"No\",\n",
        "    }\n",
        "}\n",
        "for output in app.stream(inputs):\n",
        "    for key, value in output.items():\n",
        "        # Node\n",
        "        pprint.pprint(f\"Node '{key}':\")\n",
        "        # Optional: print full state at each node\n",
        "        # pprint.pprint(value[\"keys\"], indent=2, width=80, depth=None)\n",
        "    pprint.pprint(\"\\n---\\n\")\n",
        "\n",
        "# Final generation\n",
        "pprint.pprint(value['keys']['generation'])"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "AR4jotJqrLY1",
        "outputId": "a620caec-13ec-454d-c4f7-f034633b2f1d"
      },
      "execution_count": 9,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "---RETRIEVE---\n",
            "\"Node 'retrieve':\"\n",
            "'\\n---\\n'\n",
            "---CHECK RELEVANCE---\n",
            "---GRADE: DOCUMENT IRRELEVANT---\n",
            "---GRADE: DOCUMENT RELEVANT---\n",
            "---GRADE: DOCUMENT RELEVANT---\n",
            "---GRADE: DOCUMENT IRRELEVANT---\n",
            "\"Node 'grade_documents':\"\n",
            "'\\n---\\n'\n",
            "---DECIDE TO GENERATE---\n",
            "---DECISION: TRANSFORM QUERY and RUN WEB SEARCH---\n",
            "---TRANSFORM QUERY---\n",
            "\"Node 'transform_query':\"\n",
            "'\\n---\\n'\n",
            "---WEB SEARCH---\n",
            "\"Node 'web_search':\"\n",
            "'\\n---\\n'\n",
            "---GENERATE---\n",
            "\"Node 'generate':\"\n",
            "'\\n---\\n'\n",
            "\"Node '__end__':\"\n",
            "'\\n---\\n'\n",
            "('----\\n'\n",
            " '\\n'\n",
            " 'The functionalities of sensory memory include learning embedding '\n",
            " 'representations for raw inputs like text, images, or other modalities. '\n",
            " 'Short-term memory serves as in-context learning with a limited capacity due '\n",
            " 'to the finite context window length of Transformers. Long-term memory acts '\n",
            " 'as an external vector store that the agent can access during query time '\n",
            " 'through fast retrieval. Reflection mechanisms help synthesize memories into '\n",
            " \"higher-level inferences over time and guide the agent's future behavior \"\n",
            " 'using higher-level summaries of past events. Working memory has been defined '\n",
            " 'differently across sources but generally refers to short-term memory used '\n",
            " 'for cognitive tasks.')\n"
          ]
        }
      ]
    }
  ]
}