Spaces:
Sleeping
Sleeping
# HF libraries | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain import hub | |
import gradio as gr | |
from langchain.agents import AgentExecutor | |
from langchain.agents.format_scratchpad import format_log_to_str | |
from langchain.agents.output_parsers import ( | |
ReActJsonSingleInputOutputParser, | |
) | |
# Import things that are needed generically | |
from typing import List, Dict | |
from langchain.tools.render import render_text_description | |
import os | |
from dotenv import load_dotenv | |
from innovation_pathfinder_ai.structured_tools.structured_tools import ( | |
arxiv_search, get_arxiv_paper, google_search, wikipedia_search | |
) | |
# hacky and should be replaced with a database | |
from innovation_pathfinder_ai.source_container.container import ( | |
all_sources | |
) | |
# from langchain_community.chat_message_histories import ChatMessageHistory | |
# from langchain_core.runnables.history import RunnableWithMessageHistory | |
# message_history = ChatMessageHistory() | |
config = load_dotenv(".env") | |
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID') | |
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY') | |
LANGCHAIN_TRACING_V2 = "true" | |
LANGCHAIN_ENDPOINT = "https://api.smith.langchain.com" | |
LANGCHAIN_API_KEY = os.getenv('LANGCHAIN_API_KEY') | |
LANGCHAIN_PROJECT = os.getenv('LANGCHAIN_PROJECT') | |
# Load the model from the Hugging Face Hub | |
llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_kwargs={ | |
"temperature":0.1, | |
"max_new_tokens":1024, | |
"repetition_penalty":1.2, | |
"return_full_text":False | |
}) | |
tools = [ | |
arxiv_search, | |
wikipedia_search, | |
google_search, | |
# get_arxiv_paper, | |
] | |
prompt = hub.pull("hwchase17/react-json") | |
prompt = prompt.partial( | |
tools=render_text_description(tools), | |
tool_names=", ".join([t.name for t in tools]), | |
) | |
# define the agent | |
chat_model_with_stop = llm.bind(stop=["\nObservation"]) | |
agent = ( | |
{ | |
"input": lambda x: x["input"], | |
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]), | |
} | |
| prompt | |
| chat_model_with_stop | |
| ReActJsonSingleInputOutputParser() | |
) | |
# instantiate AgentExecutor | |
agent_executor = AgentExecutor( | |
agent=agent, | |
tools=tools, | |
verbose=True, | |
max_iterations=10, # cap number of iterations | |
#max_execution_time=60, # timout at 60 sec | |
return_intermediate_steps=True, | |
handle_parsing_errors=True, | |
) | |
if __name__ == "__main__": | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0], history) | |
sources = collect_urls(all_sources) | |
src_list = '\n'.join(sources) | |
response_w_sources = response['output']+"\n\n\n Sources: \n\n\n"+src_list | |
history[-1][1] = response_w_sources | |
return history | |
def infer(question, history): | |
query = question | |
result = agent_executor.invoke( | |
{ | |
"input": question, | |
} | |
) | |
return result | |
def vote(data: gr.LikeData): | |
if data.liked: | |
print("You upvoted this response: " + data.value) | |
else: | |
print("You downvoted this response: " + data.value) | |
def collect_urls(data_list): | |
urls = [] | |
for item in data_list: | |
# Check if item is a string and contains 'link:' | |
if isinstance(item, str) and 'link:' in item: | |
start = item.find('link:') + len('link: ') | |
end = item.find(',', start) | |
url = item[start:end if end != -1 else None].strip() | |
urls.append(url) | |
# Check if item is a dictionary and has 'Entry ID' | |
elif isinstance(item, dict) and 'Entry ID' in item: | |
urls.append(item['Entry ID']) | |
return urls | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<p>Hello Dave, how can I help today?<br /> | |
</div> | |
""" | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
with gr.Tab("Google|Wikipedia|Arxiv"): | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Row(): | |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |
chatbot = gr.Chatbot([], elem_id="chatbot") | |
chatbot.like(vote, None, None) | |
clear = gr.Button("Clear") | |
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue() | |
demo.launch(debug=True) | |
x = 0 # for debugging purposes |