Spaces:
Sleeping
Sleeping
Merge pull request #12 from almutareb/add_document_to_chroma_tool
Browse files
innovation_pathfinder_ai/structured_tools/structured_tools.py
CHANGED
@@ -5,8 +5,15 @@ from langchain_community.tools import WikipediaQueryRun
|
|
5 |
from langchain_community.utilities import WikipediaAPIWrapper
|
6 |
#from langchain.tools import Tool
|
7 |
from langchain_community.utilities import GoogleSearchAPIWrapper
|
|
|
|
|
|
|
|
|
8 |
import arxiv
|
9 |
import ast
|
|
|
|
|
|
|
10 |
# hacky and should be replaced with a database
|
11 |
from innovation_pathfinder_ai.source_container.container import (
|
12 |
all_sources
|
@@ -18,6 +25,15 @@ from innovation_pathfinder_ai.database.db_handler import (
|
|
18 |
add_many
|
19 |
)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
@tool
|
22 |
def arxiv_search(query: str) -> str:
|
23 |
"""Search arxiv database for scientific research papers and studies. This is your primary information source.
|
@@ -72,9 +88,71 @@ def wikipedia_search(query: str) -> str:
|
|
72 |
api_wrapper = WikipediaAPIWrapper()
|
73 |
wikipedia_search = WikipediaQueryRun(api_wrapper=api_wrapper)
|
74 |
wikipedia_results = wikipedia_search.run(query)
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
5 |
from langchain_community.utilities import WikipediaAPIWrapper
|
6 |
#from langchain.tools import Tool
|
7 |
from langchain_community.utilities import GoogleSearchAPIWrapper
|
8 |
+
from langchain_community.embeddings.sentence_transformer import (
|
9 |
+
SentenceTransformerEmbeddings,
|
10 |
+
)
|
11 |
+
from langchain_community.vectorstores import Chroma
|
12 |
import arxiv
|
13 |
import ast
|
14 |
+
|
15 |
+
import chromadb
|
16 |
+
|
17 |
# hacky and should be replaced with a database
|
18 |
from innovation_pathfinder_ai.source_container.container import (
|
19 |
all_sources
|
|
|
25 |
add_many
|
26 |
)
|
27 |
|
28 |
+
from innovation_pathfinder_ai.vector_store.chroma_vector_store import (
|
29 |
+
add_pdf_to_vector_store
|
30 |
+
)
|
31 |
+
from innovation_pathfinder_ai.utils.utils import (
|
32 |
+
create_wikipedia_urls_from_text, create_folder_if_not_exists,
|
33 |
+
)
|
34 |
+
import os
|
35 |
+
# from innovation_pathfinder_ai.utils import create_wikipedia_urls_from_text
|
36 |
+
|
37 |
@tool
|
38 |
def arxiv_search(query: str) -> str:
|
39 |
"""Search arxiv database for scientific research papers and studies. This is your primary information source.
|
|
|
88 |
api_wrapper = WikipediaAPIWrapper()
|
89 |
wikipedia_search = WikipediaQueryRun(api_wrapper=api_wrapper)
|
90 |
wikipedia_results = wikipedia_search.run(query)
|
91 |
+
all_sources += create_wikipedia_urls_from_text(wikipedia_results)
|
92 |
+
return wikipedia_results
|
93 |
+
|
94 |
+
@tool
|
95 |
+
def chroma_search(query:str) -> str:
|
96 |
+
"""Search the Arxiv vector store for docmunets and relevent chunks"""
|
97 |
+
client = chromadb.PersistentClient(
|
98 |
+
# path=persist_directory,
|
99 |
+
)
|
100 |
+
|
101 |
+
collection_name="ArxivPapers"
|
102 |
+
#store using envar
|
103 |
+
|
104 |
+
embedding_function = SentenceTransformerEmbeddings(
|
105 |
+
model_name="all-MiniLM-L6-v2",
|
106 |
+
)
|
107 |
+
|
108 |
+
vector_db = Chroma(
|
109 |
+
client=client, # client for Chroma
|
110 |
+
collection_name=collection_name,
|
111 |
+
embedding_function=embedding_function,
|
112 |
+
)
|
113 |
+
|
114 |
+
retriever = vector_db.as_retriever()
|
115 |
+
docs = retriever.get_relevant_documents(query)
|
116 |
+
|
117 |
+
return docs.__str__()
|
118 |
+
|
119 |
+
|
120 |
+
@tool
|
121 |
+
def embed_arvix_paper(paper_id:str) -> None:
|
122 |
+
"""Download a paper from axriv to download a paper please input
|
123 |
+
the axriv id such as "1605.08386v1" This tool is named get_arxiv_paper
|
124 |
+
If you input "http://arxiv.org/abs/2312.02813", This will break the code. Also only do
|
125 |
+
"2312.02813". In addition please download one paper at a time. Pleaase keep the inputs/output
|
126 |
+
free of additional information only have the id.
|
127 |
+
"""
|
128 |
+
# code from https://lukasschwab.me/arxiv.py/arxiv.html
|
129 |
+
paper = next(arxiv.Client().results(arxiv.Search(id_list=[paper_id])))
|
130 |
+
|
131 |
+
number_without_period = paper_id.replace('.', '')
|
132 |
+
|
133 |
+
pdf_file_name = f"{number_without_period}.pdf"
|
134 |
+
|
135 |
+
pdf_directory = "./downloaded_papers"
|
136 |
+
create_folder_if_not_exists(pdf_directory)
|
137 |
+
|
138 |
+
# Download the PDF to a specified directory with a custom filename.
|
139 |
+
paper.download_pdf(dirpath=pdf_directory, filename=f"{number_without_period}.pdf")
|
140 |
+
|
141 |
+
client = chromadb.PersistentClient(
|
142 |
+
# path=persist_directory,
|
143 |
+
)
|
144 |
+
|
145 |
+
collection_name="ArxivPapers"
|
146 |
+
#store using envar
|
147 |
+
|
148 |
+
embedding_function = SentenceTransformerEmbeddings(
|
149 |
+
model_name="all-MiniLM-L6-v2",
|
150 |
+
)
|
151 |
+
|
152 |
+
full_path = os.path.join(pdf_directory, pdf_file_name)
|
153 |
|
154 |
+
add_pdf_to_vector_store(
|
155 |
+
collection_name=collection_name,
|
156 |
+
pdf_file_location=full_path,
|
157 |
+
)
|
158 |
+
|
innovation_pathfinder_ai/utils/utils.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import hashlib
|
2 |
import datetime
|
|
|
3 |
|
4 |
from innovation_pathfinder_ai.utils import logger
|
5 |
|
@@ -168,4 +169,17 @@ def hash_text(text: str) -> str:
|
|
168 |
|
169 |
|
170 |
def convert_timestamp_to_datetime(timestamp: str) -> str:
|
171 |
-
return datetime.datetime.fromtimestamp(int(timestamp)).strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import hashlib
|
2 |
import datetime
|
3 |
+
import os
|
4 |
|
5 |
from innovation_pathfinder_ai.utils import logger
|
6 |
|
|
|
169 |
|
170 |
|
171 |
def convert_timestamp_to_datetime(timestamp: str) -> str:
|
172 |
+
return datetime.datetime.fromtimestamp(int(timestamp)).strftime("%Y-%m-%d %H:%M:%S")
|
173 |
+
|
174 |
+
def create_folder_if_not_exists(folder_path: str) -> None:
|
175 |
+
"""
|
176 |
+
Create a folder if it doesn't already exist.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
- folder_path (str): The path of the folder to create.
|
180 |
+
"""
|
181 |
+
if not os.path.exists(folder_path):
|
182 |
+
os.makedirs(folder_path)
|
183 |
+
print(f"Folder '{folder_path}' created.")
|
184 |
+
else:
|
185 |
+
print(f"Folder '{folder_path}' already exists.")
|