# HF libraries from langchain_community.llms import HuggingFaceEndpoint from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_log_to_str from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser # Import things that are needed generically from langchain.tools.render import render_text_description import os from dotenv import load_dotenv from innovation_pathfinder_ai.structured_tools.structured_tools import ( arxiv_search, get_arxiv_paper, google_search, wikipedia_search, knowledgeBase_search, memory_search ) from langchain.prompts import PromptTemplate from innovation_pathfinder_ai.templates.react_json_with_memory import template_system from innovation_pathfinder_ai.utils import logger logger = logger.get_console_logger("hf_mixtral_agent") config = load_dotenv(".env") HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID') GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY') LANGCHAIN_TRACING_V2 = "true" LANGCHAIN_ENDPOINT = "https://api.smith.langchain.com" LANGCHAIN_API_KEY = os.getenv('LANGCHAIN_API_KEY') LANGCHAIN_PROJECT = os.getenv('LANGCHAIN_PROJECT') # Load the model from the Hugging Face Hub llm = HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1, max_new_tokens=1024, repetition_penalty=1.2, return_full_text=False ) tools = [ memory_search, knowledgeBase_search, arxiv_search, wikipedia_search, google_search, # get_arxiv_paper, ] prompt = PromptTemplate.from_template( template=template_system ) prompt = prompt.partial( tools=render_text_description(tools), tool_names=", ".join([t.name for t in tools]), ) # define the agent chat_model_with_stop = llm.bind(stop=["\nObservation"]) agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]), "chat_history": lambda x: x["chat_history"], } | prompt | chat_model_with_stop | ReActJsonSingleInputOutputParser() ) # instantiate AgentExecutor agent_executor = AgentExecutor( agent=agent, tools=tools, verbose=True, max_iterations=10, # cap number of iterations #max_execution_time=60, # timout at 60 sec return_intermediate_steps=True, handle_parsing_errors=True, )