map-diffuser / app.py
saburq's picture
update image urls
214fa11
raw
history blame
2.45 kB
import gradio as gr
from inference_code import generate_images
def generate_image_predictions(prompt):
images = generate_images(prompt)
return images
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# 🌍 Map Diffuser
### Generates images from a given text prompt. The prompts are in the format:
- `{style} map of {city} with {features}` or
- `satellite image of {city} with {features}` or
- `satellite image with {features}` or
- `satellite image of {city} with {features} and no {features}`
and so on...
### So for example:
- "Satellite image of amsterdam with industrial area and highways"
- "Watercolor style map of Amsterdam with residential area and highways"
- "Toner style map of Amsterdam with residential area and highways"
- "Satellite image with forests and residential, no water"
Examples table:
| Prompt | Output |
| --- | --- |
| Satellite image of industrial area with ships | <img src="https://www.evernote.com/shard/s542/sh/61ee9b28-14a4-471b-89c1-beceeaa5c3b7/U6r8RasxpAtG4lffwKc7VdZn67b8O5w85zyFcKGH6yObMrD2ArITfJV77A/deep/0/image.png" width="100" /> |
| Watercolor style map of Amsterdam with residential area and highways | <img src="https://www.evernote.com/shard/s542/sh/a22970f5-552f-4872-b738-667e64b28be4/ecjvm3GJBekvShqyebx8RQYH1ZTP4WrZzSqhB5lt6kv5jUjgKH0l7b57KA/deep/0/image.png" width="100" /> |
| Toner style map of Amsterdam with residential area and highways | <img src="https://www.evernote.com/shard/s542/sh/1dfce0dc-8d63-4a83-b590-979ad038198f/1N9mAOsR0GddsULJaAMB8dYU9eR1-McyUXtgOmVFQ4UbX0rwbNfkylI1iQ/deep/0/image.png" width="100" /> |
| Satellite image with forests and residential, no water | <img src="https://www.evernote.com/shard/s542/sh/2c532cf5-e73b-410e-8433-439466211306/Fh8SsltsWRCW_bLGmrj_TfV2vfEwTUbDiUz_bMSn__0EuzmhdTK5F-C1og/deep/0/image.png" width="300" /> |
"""
)
input = gr.components.Textbox(label="Enter a text prompt here")
output = gr.components.Image(label="Output Image")
# button to submit the prompt
button = gr.components.Button(label="Generate")
# when the button is clicked, call the generate_image_predictions function
# and pass in the prompt as an argument
button.click(generate_image_predictions, inputs=input, outputs=output)
demo.launch()