map-diffuser / inference_code.py
sabman's picture
Update inference_code.py
e84224a verified
raw
history blame
1.32 kB
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import DiffusionPipeline
model_path = "sabman/map-diffuser-v3"
# pipeline, _params = FlaxStableDiffusionPipeline.from_pretrained(model_path, dtype=jax.numpy.bfloat16)
pipeline = DiffusionPipeline.from_pretrained(
model_path,
from_flax=True, safety_checker=None).to("cuda")
# prompt = "create a map with traffic signals, busway and residential buildings, in water color style"
def generate_images(prompt):
prng_seed = jax.random.PRNGKey(-1)
num_inference_steps = 20
images = pipeline(prompt, width=512, num_inference_steps=20, num_images_per_prompt=1).images
# images = pipeline.numpy_to_pil(np.asarray(images.reshape((1,) + images.shape[-3:])))
# num_samples = jax.device_count()
# prompt = num_samples * [prompt]
# prompt_ids = pipeline.prepare_inputs(prompt)
# # shard inputs and rng
# params = replicate(_params)
# prng_seed = jax.random.split(prng_seed, jax.device_count())
# prompt_ids = shard(prompt_ids)
# images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
# images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
return images[0]