from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.text.all import * learner = load_learner("modelo") labels = list(range(0,9)) # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(text): #img = PILImage.create(img) pred,pred_idx,probs = learner.predict(text) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs="text", outputs=gr.outputs.Label(num_top_classes=3)).launch(share=False)